DOI QR코드

DOI QR Code

Characterization of Stress Responses of Heavy Metal and Metalloid Inducible Promoters in Synechocystis PCC6803

  • Blasi, Barbara (Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences) ;
  • Peca, Loredana (Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences) ;
  • Vass, Imre (Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences) ;
  • Kos, Peter B. (Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences)
  • Received : 2011.06.28
  • Accepted : 2011.10.18
  • Published : 2012.02.28

Abstract

In several biotechnological applications of living bacterial cells with inducible gene expression systems, the extent of overexpression and the specificity to the inducer are key elements. In the present study, we established the concentration ranges of $Zn^{2+}$, $Ni^{2+}$, $Co^{2+}$, ${AsO_2}^-$, and $Cd^{2+}$ ions that caused significant activation of the respective promoters of Synechocystis sp. without concomitant unspecific stress responses. The low expression levels can be increased up to 10-100-fold upon treatments with $Cd^{2+}$, ${AsO_2}^-$, $Zn^{2+}$, and $Co^{2+}$ ions and up to 800-fold upon $Ni^{2+}$ treatment. These results facilitate the development of conditional gene expression systems in cyanobacteria.

Keywords

References

  1. Briggs, L. M., V. L. Pecoraro, and L. McIntosh. 1990. Copperinduced expression, cloning, and regulatory studies of the plastocyanin gene from the cyanobacterium Synechocystis sp. PCC-6803. Plant Mol. Biol. 15: 633-642. https://doi.org/10.1007/BF00017837
  2. Brostrom, C. O. and M. A. Brostrom. 1998. Regulation of translational initiation during cellular responses to stress. Prog. Nucleic Acid Res. Mol. Biol. 58: 79-125.
  3. Cuypers, A., J. Vangronsveld, and H. Clijsters. 1999. The chemical behaviour of heavy metals plays a prominent role in the induction of oxidative stress. Free Radic. Res. 31(Suppl): S39-S43.
  4. Huang, H. H., D. Camsund, P. Lindblad, and T. Heidorn. 2010. Design and characterization of molecular tools for a synthetic biology approach towards developing cyanobacterial biotechnology. Nucleic Acids Res. 38: 2577-2593. https://doi.org/10.1093/nar/gkq164
  5. Kanesaki, Y., H. Yamamoto, K. Paithoonrangsarid, M. Shoumskaya, I. Suzuki, H. Hayashi, and N. Murata. 2007. Histidine kinases play important roles in the perception and signal transduction of hydrogen peroxide in the cyanobacterium, Synechocystis sp. PCC 6803. Plant J. 49: 313-324. https://doi.org/10.1111/j.1365-313X.2006.02959.x
  6. Kobayashi, M., T. Ishizuka, M. Katayama, M. Kanehisa, M. Bhattacharyya-Pakrasi, H. B. Pakrasi, and M. Ikeuchi. 2004. Response to oxidative stress involves a novel peroxiredoxin gene in the unicellular cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol. 45: 290-299. https://doi.org/10.1093/pcp/pch034
  7. Li, H., A. K. Singh, L. M. McIntyre, and L. A. Sherman. 2004. Differential gene expression in response to hydrogen peroxide and the putative PerR regulon of Synechocystis sp. strain PCC 6803. J. Bacteriol. 186: 3331-3345. https://doi.org/10.1128/JB.186.11.3331-3345.2004
  8. Liu, X. and R. Curtiss III. 2009. Nickel-inducible lysis system in Synechocystis sp. PCC 6803. Proc. Natl. Acad. Sci. USA 106: 21550-21554. https://doi.org/10.1073/pnas.0911953106
  9. Peca, L., P. B. Kos, Z. Mate, A. Farsang, and I. Vass. 2008. Construction of bioluminescent cyanobacterial reporter strains for detection of nickel, cobalt and zinc. FEMS Microbiol. Lett. 289: 258-264. https://doi.org/10.1111/j.1574-6968.2008.01393.x
  10. Peca, L., P. B. Kos, and I. Vass. 2007. Characterization of the activity of heavy metal-responsive promoters in the cyanobacterium Synechocystis PCC 6803. Acta Biol. Hung. 58: 11-22.

Cited by

  1. Synthetic biology of cyanobacteria: unique challenges and opportunities vol.4, pp.None, 2012, https://doi.org/10.3389/fmicb.2013.00246
  2. Essential role of the plasmid hik31 operon in regulating central metabolism in the dark in Synechocystis sp. PCC 6803 vol.91, pp.1, 2012, https://doi.org/10.1111/mmi.12442
  3. Versatile, cell and chip friendly method to gel alginate in microfluidic devices vol.16, pp.19, 2012, https://doi.org/10.1039/c6lc00769d
  4. Evaluation of promoters and ribosome binding sites for biotechnological applications in the unicellular cyanobacterium Synechocystis sp. PCC 6803 vol.6, pp.None, 2012, https://doi.org/10.1038/srep36640
  5. Biosafety of biotechnologically important microalgae: intrinsic suicide switch implementation in cyanobacterium Synechocystis sp . PCC 6803 vol.5, pp.4, 2012, https://doi.org/10.1242/bio.017129
  6. Extending the biosynthetic repertoires of cyanobacteria and chloroplasts vol.87, pp.1, 2012, https://doi.org/10.1111/tpj.13173
  7. Synthetic Chemical Inducers and Genetic Decoupling Enable Orthogonal Control of the rhaBAD Promoter vol.5, pp.10, 2012, https://doi.org/10.1021/acssynbio.6b00030
  8. A Rhamnose-Inducible System for Precise and Temporal Control of Gene Expression in Cyanobacteria vol.7, pp.4, 2018, https://doi.org/10.1021/acssynbio.7b00435
  9. Characterization of extracellular polysaccharide/protein contents during the adsorption of Cd(II) by Synechocystis sp. PCC6803 vol.25, pp.21, 2018, https://doi.org/10.1007/s11356-018-2163-3
  10. Evaluation of New Genetic Toolkits and Their Role for Ethanol Production in Cyanobacteria vol.12, pp.18, 2012, https://doi.org/10.3390/en12183515
  11. Emerging Species and Genome Editing Tools: Future Prospects in Cyanobacterial Synthetic Biology vol.7, pp.10, 2012, https://doi.org/10.3390/microorganisms7100409
  12. Development of a New Biocontainment Strategy in Model Cyanobacterium Synechococcus Strains vol.8, pp.11, 2012, https://doi.org/10.1021/acssynbio.9b00282
  13. Synechococcus elongatus as a model of photosynthetic bioreactor for expression of recombinant β-glucosidases vol.12, pp.None, 2012, https://doi.org/10.1186/s13068-019-1505-9
  14. Regulatory systems for gene expression control in cyanobacteria vol.104, pp.5, 2020, https://doi.org/10.1007/s00253-019-10344-w
  15. Behavior and Mechanism of Cesium Biosorption from Aqueous Solution by Living Synechococcus PCC7002 vol.8, pp.4, 2020, https://doi.org/10.3390/microorganisms8040491
  16. Heavy Metal Stress Alters the Response of the Unicellular Cyanobacterium Synechococcus elongatus PCC 7942 to Nitrogen Starvation vol.10, pp.11, 2020, https://doi.org/10.3390/life10110275
  17. Characterization, Cytotoxic Analysis and Action Mechanism of Antilisterial Bacteriocin Produced by Lactobacillus plantarum Isolated from Cheddar Cheese vol.26, pp.4, 2012, https://doi.org/10.1007/s10989-019-09982-5
  18. Development of a N-Acetylneuraminic Acid-Based Sensing and Responding Switch for Orthogonal Gene Regulation in Cyanobacterial Synechococcus Strains vol.10, pp.8, 2021, https://doi.org/10.1021/acssynbio.1c00139
  19. A portable library of phosphate‐depletion based synthetic promoters for customable and automata control of gene expression in bacteria vol.14, pp.6, 2012, https://doi.org/10.1111/1751-7915.13808
  20. Increased sensitivity of heavy metal bioreporters in transporter deficient Synechocystis PCC6803 mutants vol.16, pp.12, 2021, https://doi.org/10.1371/journal.pone.0261135