References
- Briggs, L. M., V. L. Pecoraro, and L. McIntosh. 1990. Copperinduced expression, cloning, and regulatory studies of the plastocyanin gene from the cyanobacterium Synechocystis sp. PCC-6803. Plant Mol. Biol. 15: 633-642. https://doi.org/10.1007/BF00017837
- Brostrom, C. O. and M. A. Brostrom. 1998. Regulation of translational initiation during cellular responses to stress. Prog. Nucleic Acid Res. Mol. Biol. 58: 79-125.
- Cuypers, A., J. Vangronsveld, and H. Clijsters. 1999. The chemical behaviour of heavy metals plays a prominent role in the induction of oxidative stress. Free Radic. Res. 31(Suppl): S39-S43.
- Huang, H. H., D. Camsund, P. Lindblad, and T. Heidorn. 2010. Design and characterization of molecular tools for a synthetic biology approach towards developing cyanobacterial biotechnology. Nucleic Acids Res. 38: 2577-2593. https://doi.org/10.1093/nar/gkq164
- Kanesaki, Y., H. Yamamoto, K. Paithoonrangsarid, M. Shoumskaya, I. Suzuki, H. Hayashi, and N. Murata. 2007. Histidine kinases play important roles in the perception and signal transduction of hydrogen peroxide in the cyanobacterium, Synechocystis sp. PCC 6803. Plant J. 49: 313-324. https://doi.org/10.1111/j.1365-313X.2006.02959.x
- Kobayashi, M., T. Ishizuka, M. Katayama, M. Kanehisa, M. Bhattacharyya-Pakrasi, H. B. Pakrasi, and M. Ikeuchi. 2004. Response to oxidative stress involves a novel peroxiredoxin gene in the unicellular cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol. 45: 290-299. https://doi.org/10.1093/pcp/pch034
- Li, H., A. K. Singh, L. M. McIntyre, and L. A. Sherman. 2004. Differential gene expression in response to hydrogen peroxide and the putative PerR regulon of Synechocystis sp. strain PCC 6803. J. Bacteriol. 186: 3331-3345. https://doi.org/10.1128/JB.186.11.3331-3345.2004
- Liu, X. and R. Curtiss III. 2009. Nickel-inducible lysis system in Synechocystis sp. PCC 6803. Proc. Natl. Acad. Sci. USA 106: 21550-21554. https://doi.org/10.1073/pnas.0911953106
- Peca, L., P. B. Kos, Z. Mate, A. Farsang, and I. Vass. 2008. Construction of bioluminescent cyanobacterial reporter strains for detection of nickel, cobalt and zinc. FEMS Microbiol. Lett. 289: 258-264. https://doi.org/10.1111/j.1574-6968.2008.01393.x
- Peca, L., P. B. Kos, and I. Vass. 2007. Characterization of the activity of heavy metal-responsive promoters in the cyanobacterium Synechocystis PCC 6803. Acta Biol. Hung. 58: 11-22.
Cited by
- Synthetic biology of cyanobacteria: unique challenges and opportunities vol.4, pp.None, 2012, https://doi.org/10.3389/fmicb.2013.00246
- Essential role of the plasmid hik31 operon in regulating central metabolism in the dark in Synechocystis sp. PCC 6803 vol.91, pp.1, 2012, https://doi.org/10.1111/mmi.12442
- Versatile, cell and chip friendly method to gel alginate in microfluidic devices vol.16, pp.19, 2012, https://doi.org/10.1039/c6lc00769d
- Evaluation of promoters and ribosome binding sites for biotechnological applications in the unicellular cyanobacterium Synechocystis sp. PCC 6803 vol.6, pp.None, 2012, https://doi.org/10.1038/srep36640
- Biosafety of biotechnologically important microalgae: intrinsic suicide switch implementation in cyanobacterium Synechocystis sp . PCC 6803 vol.5, pp.4, 2012, https://doi.org/10.1242/bio.017129
- Extending the biosynthetic repertoires of cyanobacteria and chloroplasts vol.87, pp.1, 2012, https://doi.org/10.1111/tpj.13173
- Synthetic Chemical Inducers and Genetic Decoupling Enable Orthogonal Control of the rhaBAD Promoter vol.5, pp.10, 2012, https://doi.org/10.1021/acssynbio.6b00030
- A Rhamnose-Inducible System for Precise and Temporal Control of Gene Expression in Cyanobacteria vol.7, pp.4, 2018, https://doi.org/10.1021/acssynbio.7b00435
- Characterization of extracellular polysaccharide/protein contents during the adsorption of Cd(II) by Synechocystis sp. PCC6803 vol.25, pp.21, 2018, https://doi.org/10.1007/s11356-018-2163-3
- Evaluation of New Genetic Toolkits and Their Role for Ethanol Production in Cyanobacteria vol.12, pp.18, 2012, https://doi.org/10.3390/en12183515
- Emerging Species and Genome Editing Tools: Future Prospects in Cyanobacterial Synthetic Biology vol.7, pp.10, 2012, https://doi.org/10.3390/microorganisms7100409
- Development of a New Biocontainment Strategy in Model Cyanobacterium Synechococcus Strains vol.8, pp.11, 2012, https://doi.org/10.1021/acssynbio.9b00282
- Synechococcus elongatus as a model of photosynthetic bioreactor for expression of recombinant β-glucosidases vol.12, pp.None, 2012, https://doi.org/10.1186/s13068-019-1505-9
- Regulatory systems for gene expression control in cyanobacteria vol.104, pp.5, 2020, https://doi.org/10.1007/s00253-019-10344-w
- Behavior and Mechanism of Cesium Biosorption from Aqueous Solution by Living Synechococcus PCC7002 vol.8, pp.4, 2020, https://doi.org/10.3390/microorganisms8040491
- Heavy Metal Stress Alters the Response of the Unicellular Cyanobacterium Synechococcus elongatus PCC 7942 to Nitrogen Starvation vol.10, pp.11, 2020, https://doi.org/10.3390/life10110275
- Characterization, Cytotoxic Analysis and Action Mechanism of Antilisterial Bacteriocin Produced by Lactobacillus plantarum Isolated from Cheddar Cheese vol.26, pp.4, 2012, https://doi.org/10.1007/s10989-019-09982-5
- Development of a N-Acetylneuraminic Acid-Based Sensing and Responding Switch for Orthogonal Gene Regulation in Cyanobacterial Synechococcus Strains vol.10, pp.8, 2021, https://doi.org/10.1021/acssynbio.1c00139
- A portable library of phosphate‐depletion based synthetic promoters for customable and automata control of gene expression in bacteria vol.14, pp.6, 2012, https://doi.org/10.1111/1751-7915.13808
- Increased sensitivity of heavy metal bioreporters in transporter deficient Synechocystis PCC6803 mutants vol.16, pp.12, 2021, https://doi.org/10.1371/journal.pone.0261135