References
- Baker, M. A., W. L. Maloy, M. Zasloff, and L. S. Jacob. 1993. Anticancer efficacy of Magainin2 and analogue peptides. Cancer Res. 53: 3052-3057.
- Barbault, F., C. Landon, M. Guenneugues, J. P. Meyer, V. Schott, J. L. Dimarcq, and F. Vovelle. 2003. Solution structure of Alo-3: A new knottin-type antifungal peptide from the insect Acrocinus longimanus. Biochemistry 42: 14434-14442. https://doi.org/10.1021/bi035400o
- Bulet, P., S. Cociancich, M. Reuland, F. Sauber, R. Bischoff, G. Hegy, et al. 1992. A novel insect defensin mediates the inducible antibacterial activity in larvae of the dragonfly Aeschna cyanea (Paleoptera, Odonata). Eur. J. Biochem. 209: 977-984. https://doi.org/10.1111/j.1432-1033.1992.tb17371.x
- Bulet, P., C. Hetru, J. L. Dimarcq, and D. Hoffmann. 1999. Antimicrobial peptides in insects; structure and function. Dev. Comp. Immunol. 23: 329-344. https://doi.org/10.1016/S0145-305X(99)00015-4
- Bulet, P. and R. Stocklin. 2005. Insect antimicrobial peptides: Structures, properties and gene regulation. Protein Pept. Lett. 12: 3-11. https://doi.org/10.2174/0929866053406011
- Cociancich, S., A. Ghazi, C. Hetru, J. A. Hoffmann, and L. Letellier. 1993. Insect defensin, an inducible antibacterial peptide, forms voltage-dependent channels in Micrococcus luteus. J. Biol. Chem. 268: 19239-19245.
- Dempsey, C. E. 1990. The actions of melittin on membranes. Biochim. Biophys. Acta 1031: 143-161. https://doi.org/10.1016/0304-4157(90)90006-X
- Hancock, R. E. and D. S. Chapple. 1999. Peptide antibiotics. Antimicrob. Agents Chemother. 43: 1317-1323.
- Hancock, R. E. and M. G. Scott. 2000. The role of antimicrobial peptides in animal defenses. Proc. Natl. Acad. Sci. USA 97: 8856-8861. https://doi.org/10.1073/pnas.97.16.8856
- Hwang, J. S., J. Lee, Y. J. Kim, H. S. Bang, E. Y. Yun, S. R. Kim, et al. 2009. Isolation and characterization of a defensinlike peptide (coprisin) from the dung beetle, Copris tripartitus. Int. J. Pept. 2009.
- Iwasaki, T., J. Ishibashi, H. Tanaka, M. Sato, A. Asaoka, D. Taylor, et al. 2009. Selective cancer cell cytotoxicity of enantiomeric 9-mer peptides derived from beetle defensins depends on negatively charged phosphatidylserine on the cell surface. Peptides 30: 660-668. https://doi.org/10.1016/j.peptides.2008.12.019
- Lehmann, J., M. Retz, S. S. Sidhu, H. Suttmann, M. Sell, F. Paulsen, et al. 2006. Antitumor activity of the antimicrobial peptide magainin II against bladder cancer cell lines. Eur. Urol. 50: 141-147. https://doi.org/10.1016/j.eururo.2005.12.043
- Moore, A. J., D. A. Devine, and M. C. Bibby. 1994. Preliminary experimental anticancer activity cecropins. Pept. Res. 7: 265-269.
- Papo, N., A. Braunstein, Z. Eshhar, and Y. Shai. 2004. Suppression of human prostate tumor growth in mice by a cytolytic D-,L-amino acid peptide, membrane lysis, increased necrosis, and inhibition of prostate-specific antigen secretion. Cancer Res. 64: 5779-5786. https://doi.org/10.1158/0008-5472.CAN-04-1438
- Papo, N. and Y. Shai. 2003. New lytic peptides based on the D,L-amphipathic helix motif preferentially kill tumor cells compared to normal cells. Biochemistry 42: 9346-9354. https://doi.org/10.1021/bi027212o
- Papo, N. and Y. Shai. 2005. Host defense peptides as new weapons in cancer treatment. Cell Mol. Life Sci. 62: 784-790. https://doi.org/10.1007/s00018-005-4560-2
- Schuhmann, B., V. Seitz, A. Vilcinskas, and L. Podsiadlowski. 2003. Cloning and expression of gallerimycin, an antifungal peptide expressed in immune response of greater wax moth larvae, Galleria mellonella. Arch. Insect Biochem. Physiol. 53: 125-133. https://doi.org/10.1002/arch.10091
- Soballe, P. W., W. L. Maloy, M. L. Myrga, L. S. Jacob, and M. Herlyn. 1995. Experimental local therapy of human melanoma with lytic magainin peptides. Int. J. Cancer 60: 280-284. https://doi.org/10.1002/ijc.2910600225
- Thevissen, K., K. K. Ferket, I. E. Francois, and B. P. Cammue. 2003. Interactions of antifungal plant defensins with fungal membrane components. Peptides 24: 1705-1712. https://doi.org/10.1016/j.peptides.2003.09.014
- Tosteson, M. T., S. J. Holmes, M. Razin, and D. C. Tosteson. 1985. Melittin lysis of red cells. J. Membr. Biol. 87: 35-44. https://doi.org/10.1007/BF01870697
- Xiao, Y. C., Y. D. Huang, P. L. Xu, Z. Q. Zhou, and X. K. Li. 2006. Pro-apoptotic effect of cecropin AD on nasopharyngeal carcinoma cells. Chin. Med. J. (Engl.) 119: 1042-1046.
Cited by
- Anticancer activity of a synthetic peptide derived from harmoniasin, an antibacterial peptide from the ladybug Harmonia axyridis vol.43, pp.2, 2012, https://doi.org/10.3892/ijo.2013.1973
- Anticancer activity of CopA3 dimer peptide in human gastric cancer cells vol.48, pp.6, 2012, https://doi.org/10.5483/bmbrep.2015.48.6.073
- Enantiomeric CopA3 dimer peptide suppresses cell viability and tumor xenograft growth of human gastric cancer cells vol.37, pp.3, 2016, https://doi.org/10.1007/s13277-015-4162-z
- How are the expression patterns of gut antimicrobial peptides modulated by human gastrointestinal diseases? A bridge between infectious, inflammatory, and malignant diseases vol.24, pp.3, 2012, https://doi.org/10.1002/psc.3071
- Intracellular synthesis of gold nanoparticles by Gluconacetobacter liquefaciens for delivery of peptide CopA3 and ginsenoside and anti-inflammatory effect on lipopolysaccharide-activated macrophages vol.48, pp.1, 2020, https://doi.org/10.1080/21691401.2020.1748639
- Dual Antimicrobial and Antiproliferative Activity of TcPaSK Peptide Derived from a Tribolium castaneum Insect Defensin vol.9, pp.2, 2012, https://doi.org/10.3390/microorganisms9020222
- Potent Activity of Hybrid Arthropod Antimicrobial Peptides Linked by Glycine Spacers vol.22, pp.16, 2012, https://doi.org/10.3390/ijms22168919