참고문헌
- Amoozegar, M. A., A. Z. Fatemi, H. R. Karbalaei-Heidari, and M. R. Razavi. 2007. Production of an extracellular alkaline metalloprotease from a newly isolated, moderately halophile, Salinivibrio sp. strain AF-2004. Microbiol. Res. 162: 369-377. https://doi.org/10.1016/j.micres.2006.02.007
- Banerjee, U. C., R. K. Sani, W. Azmi, and R. Soni. 1999. Thermostable alkaline protease from Bacillus brevis and its characterization as a laundry detergent additive. Process Biochem. 35: 213-219. https://doi.org/10.1016/S0032-9592(99)00053-9
- Beg, Q. K. and R. Gupta. 2003. Purification and characterization of an oxidation-stable, thiol-dependent serine alkaline protease from Bacillus mojavensis. Enzyme Microb. Technol. 32: 294-304. https://doi.org/10.1016/S0141-0229(02)00293-4
- Bradford, M. M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
- Bryan, P. N. 2000. Protein engineering of subtilisin. Biochim. Biophys. Acta 1543: 203-222. https://doi.org/10.1016/S0167-4838(00)00235-1
- Chu, W.H. 2007. Optimization of extracellular alkaline protease production from species of Bacillus. J. Ind. Microbiol. Biotechnol. 34: 241-245. https://doi.org/10.1007/s10295-006-0192-2
- Estell, D. D., T. P. Graycar, and J. A. Wells. 1985. Engineering an enzyme by site-directed mutagenesis to be resistant to chemical oxidation. J. Biol. Chem. 260: 6518-6521.
- Fang, Y. Y., W. B. Yang, S. L. Ong, J. Y. Hu, and W. J. Ng. 2001. Fermentation of starch for enhanced alkaline protease production by constructing an alkalophilic Bacillus pumilus strain. Appl. Microbiol. Biotechnol. 57: 153-160. https://doi.org/10.1007/s002530100765
- Gattinger, L. D., Z. Duvnjak, and A. W. Khan. 1990. The use of canola meal as a substrate for xylanase production by Trichoderma reesei. Appl. Microbiol. Biotechnol. 33: 21-25.
- Gencka, H. and C. Tari. 2006. Alkaline protease production from alkalophilic Bacillus sp. isolated from natural habitats. Enzyme Microb. Technol. 39: 703-710. https://doi.org/10.1016/j.enzmictec.2005.12.004
- Gessesse, A. 1997. The use of nug meal as low-cost substrate for the production of alkaline protease by the alkaliphilic Bacillus sp. AR-009 and some properties of the enzyme. Bioresour. Technol. 62: 59-61. https://doi.org/10.1016/S0960-8524(97)00059-X
- Gupta, R., K. Gupta, R. K. Saxena, and S. Khan. 1999. Bleachstable alkaline protease from Bacillus sp. Biotechnol. Lett. 21: 135-138. https://doi.org/10.1023/A:1005478117918
- Gupta, R., Q. K. Beg, S. Khan, and B. Chauhan. 2002. An overview on fermentation, downstream processing and properties of microbial alkaline proteases. Appl. Microbiol. Biotechnol. 60: 381-395. https://doi.org/10.1007/s00253-002-1142-1
-
Hmidet, N., N. E. Ali, A. Haddar, S. Kanoun, S. K. Alya, and M. Nasri. 2009. Alkaline proteases and thermostable
$\alpha$ -amylase co-produced by Bacillus licheniformis NH1: Characterization and potential application as detergent additive. Biochem. Eng. J. 47: 71-79. https://doi.org/10.1016/j.bej.2009.07.005 - Horikoshi, K. 1971. Production of alkaline enzymes by alkalophilic microorganisms. I. Alkaline protease produced by Bacillus no. 221. Agric. Biol. Chem. 35: 1407-1414.
- Horikoshii, K. 1999. Alkalophiles: Some applications of their products for biotechnology. Microbiol. Mol. Biol. Rev. 63: 735-750.
- Ito, S., T. Kobayashi, K. Ara, K. Ozaki, S. Kawai, and Y. Hatada. 1998. Alkaline detergent enzymes from alkaliphiles: Enzymatic properties, genetics, and structures. Extremophiles 2: 185-190. https://doi.org/10.1007/s007920050059
- Jacobs, M. F. 1995. Expression of the subtilisin Carlsbergencoding gene in Bacillus licheniformis and Bacillus subtilis. Gene 152: 67-74.
- Jaouadi, B., S. Ellouz-Chaabouni, M. Rhimi, and S. Bejar. 2008. Biochemical and molecular characterization of a detergentstable serine alkaline protease from Bacillus pumilus CBS with high catalytic efficiency. Biochimie 90: 1291-1305. https://doi.org/10.1016/j.biochi.2008.03.004
- Jaouadi, B., N. Aghajari, R. Haser, and S. Bejar. 2010. Enhancement of the thermostability and the catalytic efficiency of Bacillus pumilus CBS protease by site-directed mutagenesis. Biochimie 92: 360-369. https://doi.org/10.1016/j.biochi.2010.01.008
- Joo, H. S., C. G. Kumar, G. C. Park, S. R. Paik, and C. S. Chang. 2002. Optimization of the production of an extracellular alkaline protease from Bacillus horikoshii. Process Biochem. 38: 155-159. https://doi.org/10.1016/S0032-9592(02)00061-4
- Joo, H. S., C. G. Kumar, G. C. Park, S. R. Paik, and C. S. Chang. 2003. Oxidant and SDS-stable alkaline protease from Bacillus clausii I-52: Production and some properties. J. Appl. Microbiol. 95: 267-272. https://doi.org/10.1046/j.1365-2672.2003.01982.x
- Joo, H. S., C. G. Kumar, G. C. Park, S. R. Paik, and C. S. Chang. 2004. Bleach-resistant alkaline protease produced by a Bacillus sp. isolated from the Korean polychaeta, Periserrula leucophryna. Process Biochem. 39: 1441-1447. https://doi.org/10.1016/S0032-9592(03)00260-7
- Joo, H. S. and C. S. Chang. 2005. Production of protease from a new alkalophilic Bacillus sp. I-312 grown on soybean meal: Optimization and some properties. Process Biochem. 40: 1263- 1270. https://doi.org/10.1016/j.procbio.2004.05.010
- Joshi, R. H., M. S. Dodia, and S. P. Singh. 2008. Production and optimization of a commercially viable alkaline protease from a haloalkaliphilic bacterium. Biotechnol. Bioprocess Eng. 13: 552-559. https://doi.org/10.1007/s12257-007-0211-9
- Kaur, S., R. M. Vohra, M. Kapoor, Q. K. Beg, and G. S. Hoondal. 2001. Enhanced production and characterization of a highly thermostable alkaline protease from Bacillus sp. P-2. World J. Microbiol. Biotechnol. 17: 125-129. https://doi.org/10.1023/A:1016637528648
- Klingeberg, M., B. Galunsky, C. Sjoholm, V. Kasche, and G. Antranikian. 1995. Purification and properties of a highly thermostable, sodium dodecyl sulfate-resistant and stereospecic proteinase from the extremely thermophilic archaeon Thermococcus stetteri. Appl. Environ. Microbiol. 61: 3098-3104.
- Kobayashi, T., Y. Hakamada, S. Adachi, J. Hitomi, T. Yoshimatsu, K. Koike, S. Kawai, and S. Ito. 1995. Purification and properties of an alkaline protease form alkalophilic Bacillus sp. KSM-16. Appl. Microbiol. Biotechnol. 43: 473-481. https://doi.org/10.1007/BF00218452
- Koo, K. B., H. S. Joo, and J. W. Choi. 2010. Decolorization method of crude alkaline protease preparation produced from an alkalophilic Bacillus clausii. Biotechnol. Bioprocess Eng. 16: 89-96.
- Kumar, C. G. and H. Takagi. 1999. Microbial alkaline proteases: From a bioindustrial viewpoint. Biotechnol. Adv. 17: 561-594. https://doi.org/10.1016/S0734-9750(99)00027-0
- Kumar, C. G., M. P. Tiwari, and K. D. Jany. 1999. Novel alkaline serine proteases from alkalophilic Bacillus sp.: Purification and characterization. Process Biochem. 34: 441-449. https://doi.org/10.1016/S0032-9592(98)00110-1
- Kumar, C. G. and P. Parrack. 2003. Activated charcoal: A versatile decolorization agent for the recovery and purification of alkaline protease. World J. Microbiol. Biotechnol. 19: 243-246. https://doi.org/10.1023/A:1023644615956
- Kunst, F., N. Ogasawara, I. Moszer, A. M. Albertini, G. Alloni, V. Azevedo, et al. 1997. The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature 390: 237-238.
- Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 22: 680-685.
- Manachini, P. L. and M. G. Fortina. 1998. Production in seawater of thermostable alkaline proteases by a halotolerant strain of Bacillus licheniformis. Biotechnol. Lett. 20: 565-568. https://doi.org/10.1023/A:1005349728182
- Maurer, K. H. 2004. Detergent proteases. Curr. Opin. Biotechnol. 15: 330-334. https://doi.org/10.1016/j.copbio.2004.06.005
- Patel, R., M. Dodia, and S. P. Singh. 2005. Extracellular alkaline protease from a newly isolated haloalkaliphilic Bacillus sp.: Production and optimization. Process Biochem. 40: 3569-3575. https://doi.org/10.1016/j.procbio.2005.03.049
- Phadatare, S. U., V. V. Deshpande, and M. C. Srinvasan. 1993. High activity alkaline protease from Conidiobolus coronatus(NCL 86.8.20): Enzyme production and compatibility with commercial detergents. Enzyme Microb. Technol. 15: 72-76. https://doi.org/10.1016/0141-0229(93)90119-M
- Rao, M. B., A. M. Tanksale, M. S. Ghatge, and V. V. Deshpande. 1998. Molecular and biotechnological aspects of microbial proteases. Microbiol. Mol. Biol. Rev. 62: 597-635.
- Rao, C. S., T. Sathish, P. Ravichandra, and R. S. Prakasham. 2009. Characterization of thermo- and detergent stable serine protease from isolated Bacillus circulans and evaluation of ecofriendly applications. Process Biochem. 44: 262-268. https://doi.org/10.1016/j.procbio.2008.10.022
- Sadana, A. and A. M. Beelaram. 1994. Efficiency and economics of bioseparation: Some case studies. Bioseparation 4: 221-235.
- Saeki, K., J. Hitomi, M. Okuda, Y. Hatada, Y. Kageyama, M. Takaiwa, et al. 2002. A novel species of alkalophilic Bacillus that produces an oxidatively stable alkaline serine protease. Extremophiles 6: 65-72. https://doi.org/10.1007/s007920100224
- Saeki, K., K. Ozaki, T. Kobayashi, and S. Ito. 2007. Detergent alkaline proteases: Enzymatic properties, genes, and crystal structures. J. Biosci. Bioeng. 103: 501-508. https://doi.org/10.1263/jbb.103.501
- Samal, B. B., B. Karan, and Y. Stabinsky. 1990. Stability of two novel serine proteinases in commercial laundry detergent formulations. Biotechnol. Bioeng. 28: 609-612.
- Shivanand, P. and G. Jayaraman. 2009. Production of extracellular protease from halotolerant bacterium, Bacillus aquimaris strain VITP4 isolated from Kumta coast. Process Biochem. 44: 1088- 1094. https://doi.org/10.1016/j.procbio.2009.05.010
- Sigma, D. S. and G. Mooser. 1975. Chemical studies of enzyme active sites. Annu. Rev. Biochem. 44: 889-931. https://doi.org/10.1146/annurev.bi.44.070175.004325
- Stepanov, V. M., G. N. Rudenskaya, L. P. Revina, Y. B. Gryanova, E. N. Lysogorskaya, and I. Y. Filippova. 1992. A serine proteinase of an archaebacterium, Halobacterium mediterranei. Biochem. J. 283: 281-286. https://doi.org/10.1042/bj2830281
- Studdert, C. A., M. K. H. Seitz, M. I. P. Gil, J. J. Sanchez, and R. E. de Castro. 2001. Purification and biochemical characterization of the haloalkaliphilic archaeon Natronococcus occultus extracellular serine protease. J. Basic Microbiol. 41: 375-383. https://doi.org/10.1002/1521-4028(200112)41:6<375::AID-JOBM375>3.0.CO;2-0
- Takami, H., K. Nakasone, Y. Takaki, G. Maeno, R. Sasaki, N. Masui, et al. 2000. Complete genome sequence of the alkaliphilic bacterium Bacillus halodurans and genomic sequence comparison with Bacillus subtilis. Nucl. Acids Res. 28: 4317-4331. https://doi.org/10.1093/nar/28.21.4317
- Tunlid, A., S. Rosen, B. Ek, and L. Rask. 1994. Purification and characterization of an extracellular serine protease from the nematode-trapping fungus Arthrobotrys oligospora. Microbiology 140: 1687-1695. https://doi.org/10.1099/13500872-140-7-1687
- VijayAnand, S., J. Hemapriya, J. Selvin, and S. Kiran. 2010. Production and optimization of haloalkaliphilic protease by an extremophile-Halobacterium sp. Js1, isolated from thalassohaline environment. Global J. Biotechnol. Biochem. 5: 44-49.
- Wells, J. A., E. Ferrari, D. J. Henner, D. A. Estell, and E. Y. Chen. 1983. Cloning, sequencing, and secretion of Bacillus amyloliquefaciens subtilisin in Bacillus subtilis. Nucl. Acids Res. 11: 7911-7925. https://doi.org/10.1093/nar/11.22.7911
- Yang, J. K., I. L. Shih, Y. M. Tzeng, and S. L.Wang. 2000. Production and purification of protease from a Bacillus subtilis that can deproteinize crustacean wastes. Enzyme Microb. Technol. 26: 406-413. https://doi.org/10.1016/S0141-0229(99)00164-7
- Zambare, V. P., S. S. Nilegaonkar, and P. P. Kanekar. 2007. Production of an alkaline protease by Bacillus cereus MCM B- 326 and its application as a dehairing agent. World J. Microbiol. Biotechnol. 23: 1569-1574. https://doi.org/10.1007/s11274-007-9402-y
- Jaouadi, B., N. Aghajari, R. Haser, and S. Bejar. 2010. Enhancement of the thermostability and the catalytic efficiency of Bacillus pumilus CBS protease by site-directed mutagenesis. Biochimie 92: 360-369. https://doi.org/10.1016/j.biochi.2010.01.008
- Hadj-Ali, N. E., R. Agrebi, B. Ghorbel-Frikha, A. Sellami- Kamoun, S. Kanoun, and M. Nasri. 2007. Biochemical and molecular characterization of a detergent stable alkaline serineprotease from a newly isolated Bacillus licheniformis NH1. Enzyme Microb. Technol. 40: 515-523. https://doi.org/10.1016/j.enzmictec.2006.05.007
- Huang, Q., Y. Peng, X. Li, H. Wang, and Y. Zhang. 2003. Purification and characterization of an extracellular alkaline serine protease with dehairing function from Bacillus pumilus. Curr. Microbiol. 46: 169-173. https://doi.org/10.1007/s00284-002-3850-2
- Agrebi, R., A. Haddar, N. Hmidet, K. Jellouli, L. Manni, and M. Nasri. 2009. BSF1 fibrinolytic enzyme from a marine bacterium Bacillus subtilis A26: Purification, biochemical and molecular characterization. Process Biochem. 44: 1252-1259. https://doi.org/10.1016/j.procbio.2009.06.024
- Nakamura, T., Y. Yamagata, and E. Ichishima. 1992. Nucleotide sequence of the subtilisin NAT gene, aprN, of Bacillus subtilis (natto). Biosci. Biotechnol. Biochem. 56: 1869-1871. https://doi.org/10.1271/bbb.56.1869
- Ko, J. H., J. P. Yan, L. Zhu, and Y. P. Qi. 2004. Identification of two novel fibrinolytic enzymes from Bacillus subtilis QK02. Comp. Biochem. Physiol. C 137: 65-74.
- Liang, X., S. Jia, Y. Sun, M. Chen, X. Chen, and J. Zhong. 2007. Secretory expression of nattokinase from Bacillus subtilis YF38 in Escherichia coli. Mol. Biotechnol. 37: 187-194. https://doi.org/10.1007/s12033-007-0060-y
- Lee, S. K., D. H. Bae, T. J. Kwon, S. B. Lee, H. H. Lee, and J. H. Park. 2001. Purification and characterization of a fibrinolytic enzyme from Bacillus sp. KDO-13 isolated from soybean paste. J. Microbiol. Biotechnol. 11: 845-852.
피인용 문헌
- Secretory Expression, Functional Characterization, and Molecular Genetic Analysis of Novel Halo-Solvent-Tolerant Protease from Bacillus gibsonii vol.24, pp.2, 2012, https://doi.org/10.4014/jmb.1308.08094
- Purification and characterization of cloned alkaline protease gene of Geobacillus stearothermophilus vol.55, pp.2, 2012, https://doi.org/10.1002/jobm.201400190
- Production, purification and characterization of a thermostable alkaline serine protease from Bacillus lichniformis NMS-1 vol.6, pp.3, 2015, https://doi.org/10.5897/ijbmbr2014.0199
- Draft Whole-Genome Sequence of the Type Strain Bacillus horikoshii DSM 8719 vol.4, pp.4, 2012, https://doi.org/10.1128/genomea.00641-16
- 호알칼리성 Bacillus sp. DK1122 균주가 생산하는 알칼리성 단백질 분해효소의 정제 및 특성 vol.44, pp.3, 2012, https://doi.org/10.4014/mbl.1606.06002
- Genome Sequence of Bacillus sp. Strain UMTAT18 Isolated from the Dinoflagellate Alexandrium tamiyavanichii Found in the Straits of Malacca vol.4, pp.5, 2012, https://doi.org/10.1128/genomea.01106-16
- Bacterial and Fungal Proteolytic Enzymes: Production, Catalysis and Potential Applications vol.183, pp.1, 2012, https://doi.org/10.1007/s12010-017-2427-2
- A novel alkaline protease from alkaliphilic Idiomarina sp. C9-1 with potential application for eco-friendly enzymatic dehairing in the leather industry vol.8, pp.None, 2018, https://doi.org/10.1038/s41598-018-34416-5