DOI QR코드

DOI QR Code

Cells Transformed by PLC-Gamma 1 Overexpression are Highly Sensitive to Clostridium difficile Toxin A-Induced Apoptosis and Mitotic Inhibition

  • Nam, Hyo-Jung (Department of Life Science, College of Natural Science, Daejin University) ;
  • Kang, Jin-Ku (Department of Life Science, College of Natural Science, Daejin University) ;
  • Chang, Jong-Soo (Department of Life Science, College of Natural Science, Daejin University) ;
  • Lee, Min-Soo (Department of Life Science, College of Natural Science, Daejin University) ;
  • Nam, Seung-Taek (Department of Life Science, College of Natural Science, Daejin University) ;
  • Jung, Hyun-Woo (Department of Life Science, College of Natural Science, Daejin University) ;
  • Kim, Sung-Kuk (Department of Life Science, College of Natural Science, Daejin University) ;
  • Ha, Eun-Mi (College of Pharmacy, Catholic University of Daegu) ;
  • Seok, Heon (Department of Medical Engineering, Jungwon University) ;
  • Son, Seung-Woo (Suzhou Singapore International School, Suzhou Industrial Park) ;
  • Park, Young-Joo (Department of Internal Medicine, Seoul National University College of Medicine) ;
  • Kim, Ho (Department of Life Science, College of Natural Science, Daejin University)
  • Received : 2011.07.11
  • Accepted : 2011.09.23
  • Published : 2012.01.28

Abstract

Phospholipase C-${\gamma}l$ (PLC-${\gamma}l$) expression is associated with cellular transformation. Notably, PLC-${\gamma}$ is up-regulated in colorectal cancer tissue and breast carcinoma. Because exotoxins released by Clostridium botulinum have been shown to induce apoptosis and promote growth arrest in various cancer cell lines, we examined here the potential of Clostridium difficile toxin A to selectively induce apoptosis in cells transformed by PLC-${\gamma}l$ overexpression. We found that PLC-${\gamma}l$-transformed cells, but not vector-transformed (control) cells, were highly sensitive to C. difficile toxin A-induced apoptosis and mitotic inhibition. Moreover, expression of the proapoptotic Bcl2 family member, Bim, and activation of caspase-3 were significantly up-regulated by toxin A in PLC-${\gamma}l$-transformed cells. Toxin A-induced cell rounding and paxillin dephosphorylation were also significantly higher in PLC-${\gamma}l$-transformed cells than in control cells. These findings suggest that C. difficile toxin A may have potential as an anticancer agent against colorectal cancers and breast carcinomas in which PLC-${\gamma}l$ is highly up-regulated.

Keywords

References

  1. Allam, M., R. Bertrand, G. Zhang-Sun, J. Pappas, and J. Viallet. 1997. Cholera toxin triggers apoptosis in human lung cancer cell lines. Cancer Res. 57: 2615-2618.
  2. Ansiaux, R. and B. Gallez. 2007. Use of botulinum toxins in cancer therapy. Expert Opin. Investig. Drugs 16: 209-218. https://doi.org/10.1517/13543784.16.2.209
  3. Arteaga, C. L., M. D. Johnson, G. Todderud, R. J. Coffey, G. Carpenter, and D. L. Page. 1991. Elevated content of the tyrosine kinase substrate phospholipase C-gamma 1 in primary human breast carcinomas. Proc. Natl. Acad. Sci. USA 88: 10435-10439. https://doi.org/10.1073/pnas.88.23.10435
  4. Berridge, M. J. 1993. Inositol trisphosphate and calcium signalling. Nature 361: 315-325. https://doi.org/10.1038/361315a0
  5. Chang, J. S., S. Iwashita, Y. H. Lee, M. J. Kim, S. H. Ryu, and P. G. Suh. 1999. Transformation of rat fibroblasts by phospholipase C-gamma1 overexpression is accompanied by tyrosine dephosphorylation of paxillin. FEBS Lett. 460: 161-165. https://doi.org/10.1016/S0014-5793(99)01338-1
  6. Chang, J. S., S. K. Kim, T. K. Kwon, S. S. Bae, D. S. Min, Y. H. Lee, et al. 2005. Pleckstrin homology domains of phospholipase C-gamma 1 directly interact with beta-tubulin for activation of phospholipase C-gamma 1 and reciprocal modulation of betatubulin function in microtubule assembly. J. Biol. Chem. 280: 6897-6905. https://doi.org/10.1074/jbc.M406350200
  7. Chang, J. S., D. Y. Noh, I. A. Park, M. J. Kim, H. Song, S. H. Ryu, and P. G. Suh. 1997. Overexpression of phospholipase C-gamma 1 in rat 3Y1 fibroblast cells leads to malignant transformation. Cancer Res. 57: 5465-5468.
  8. Choi, J. H., J. B. Park, S. S. Bae, S. Yun, H. S. Kim, W. P. Hong, et al. 2004. Phospholipase C-gamma 1 is a guanine nucleotide exchange factor for dynamin-1 and enhances dynamin- 1-dependent epidermal growth factor receptor endocytosis. J. Cell Sci. 117: 3785-3795. https://doi.org/10.1242/jcs.01220
  9. Dijkers, P. F., R. H. Medema, J. W. Lammers, L. Koenderman, and P. J. Coffer. 2000. Expression of the pro-apoptotic Bcl-2 family member Bim is regulated by the forkhead transcription factor FKHR-L1. Curr. Biol. 10: 1201-1204. https://doi.org/10.1016/S0960-9822(00)00728-4
  10. He, D., S. J. Hagen, C. Pothoulakis, M. Chen, N. D. Medina, M. Warny, and J. T. LaMont. 2000. Clostridium difficile toxin A causes early damage to mitochondria in cultured cells. Gastroenterology 119: 139-150. https://doi.org/10.1053/gast.2000.8526
  11. Hellman, M., J. Berg, K. K. Brandt, and S. Hallin. 2011. Survey of bromodeoxyuridine uptake among environmental bacteria and variation in uptake rates in a taxonomically diverse set of bacterial isolates. J. Microbiol. Methods 86: 376-378. https://doi.org/10.1016/j.mimet.2011.05.020
  12. Johansson, D., P. Bergstrom, R. Henriksson, K. Grankvist, A. Johansson, and P. Behnam-Motlagh. 2006. Adenylate cyclase toxin from Bordetella pertussis enhances cisplatin-induced apoptosis to lung cancer cells in vitro. Oncol. Res. 15: 423-430.
  13. Just, I., G. Fritz, K. Aktories, M. Giry, M. R. Popoff, P. Boquet, et al. 1994. Clostridium difficile toxin B acts on the GTPbinding protein Rho. J. Biol. Chem. 269: 10706-10712.
  14. Just, I., J. Selzer, C. von Eichel-Streiber, and K. Aktories. 1995. The low molecular mass GTP-binding protein Rho is affected by toxin A from Clostridium difficile. J. Clin. Invest. 95: 1026-1031. https://doi.org/10.1172/JCI117747
  15. Just, I., J. Selzer, M. Wilm, C. von Eichel-Streiber, M. Mann, and K. Aktories. 1995. Glucosylation of Rho proteins by Clostridium difficile toxin B. Nature 375: 500-503. https://doi.org/10.1038/375500a0
  16. Just, I., M. Wilm, J. Selzer, G. Rex, C. von Eichel-Streiber, M. Mann, and K. Aktories. 1995. The enterotoxin from Clostridium difficile (ToxA) monoglucosylates the Rho proteins. J. Biol. Chem. 270: 13932-13936. https://doi.org/10.1074/jbc.270.23.13932
  17. Karsenty, G., J. Rocha, S. Chevalier, E. Scarlata, C. Andrieu, F. Z. Zouanat, et al. 2009. Botulinum toxin type A inhibits the growth of LNCaP human prostate cancer cells in vitro and in vivo. Prostate 69: 1143-1150. https://doi.org/10.1002/pros.20958
  18. Kim, H., E. Kokkotou, X. Na, S. H. Rhee, M. P. Moyer, C. Pothoulakis, and J. T. Lamont. 2005. Clostridium difficile toxin A-induced colonocyte apoptosis involves p53-dependent p21(WAF1/CIP1) induction via p38 mitogen-activated protein kinase. Gastroenterology 129: 1875-1888. https://doi.org/10.1053/j.gastro.2005.09.011
  19. Kim, H., S. H. Rhee, E. Kokkotou, X. Na, T. Savidge, M. P. Moyer, et al. 2005. Clostridium difficile toxin A regulates inducible cyclooxygenase-2 and prostaglandin E2 synthesis in colonocytes via reactive oxygen species and activation of p38 MAPK. J. Biol. Chem. 280: 21237-21245. https://doi.org/10.1074/jbc.M413842200
  20. Kim, H., S. H. Rhee, C. Pothoulakis, and J. T. Lamont. 2009. Clostridium difficile toxin A binds colonocyte Src causing dephosphorylation of focal adhesion kinase and paxillin. Exp. Cell Res. 315: 3336-3344. https://doi.org/10.1016/j.yexcr.2009.05.020
  21. Kim, H., S. H. Rhee, C. Pothoulakis, and J. T. Lamont. 2007. Inflammation and apoptosis in Clostridium difficile enteritis is mediated by PGE2 up-regulation of Fas ligand. Gastroenterology 133: 875-886. https://doi.org/10.1053/j.gastro.2007.06.063
  22. Lamont, J. T. 2002. Theodore E. Woodward Award. How bacterial enterotoxins work: Insights from in vivo studies. Trans. Am. Clin. Climatol. Assoc. 113: 167-180; discussion 180-181.
  23. Lee, H. Y., N. Naha, J. H. Kim, M. J. Jo, K. S. Min, H. H. Seong, et al. 2008. Age- and area-dependent distinct effects of ethanol on Bax and Bcl-2 expression in prenatal rat brain. J. Microbiol. Biotechnol. 18: 1590-1598.
  24. Lee, S. J., S. D. Lee, J. G. Park, C. M. Kim, S. H. Ryu, and P. G. Suh. 1995. Overexpression of phospholipase C-gamma 1 in colorectal carcinomas is associated with overexpression of factors that bind its promoter. J. Biol. Chem. 270: 16378-16384. https://doi.org/10.1074/jbc.270.27.16378
  25. Luciano, F., A. Jacquel, P. Colosetti, M. Herrant, S. Cagnol, G. Pages, and P. Auberger. 2003. Phosphorylation of Bim-EL by Erk1/2 on serine 69 promotes its degradation via the proteasome pathway and regulates its proapoptotic function. Oncogene 22: 6785-6793. https://doi.org/10.1038/sj.onc.1206792
  26. Martarelli, D., P. Pompei, and G. Mazzoni. 2009. Inhibition of adrenocortical carcinoma by diphtheria toxin mutant CRM197. Chemotherapy 55: 425-432. https://doi.org/10.1159/000264689
  27. Nam, H. J., J. K. Kang, S. K. Kim, K. J. Ahn, H. Seok, S. J. Park, et al. Clostridium difficile toxin A decreases acetylation of tubulin, leading to microtubule depolymerization through activation of histone deacetylase 6, and this mediates acute inflammation. J. Biol. Chem. 285: 32888-32896. https://doi.org/10.1074/jbc.M110.162743
  28. Noh, D. Y., Y. H. Lee, S. S. Kim, Y. I. Kim, S. H. Ryu, P. G. Suh, and J. G. Park. 1994. Elevated content of phospholipase Cgamma 1 in colorectal cancer tissues. Cancer 73: 36-41. https://doi.org/10.1002/1097-0142(19940101)73:1<36::AID-CNCR2820730108>3.0.CO;2-5
  29. Pothoulakis, C., R. J. Gilbert, C. Cladaras, I. Castagliuolo, G. Semenza, Y. Hitti, et al. 1996. Rabbit sucrase-isomaltase contains a functional intestinal receptor for Clostridium difficile toxin A. J. Clin. Invest. 98: 641-649. https://doi.org/10.1172/JCI118835
  30. Pothoulakis, C. and J. T. Lamont. 2001. Microbes and microbial toxins: Paradigms for microbial-mucosal interactions II. The integrated response of the intestine to Clostridium difficile toxins. Am. J. Physiol. Gastrointest. Liver Physiol. 280: G178-G183. https://doi.org/10.1152/ajpgi.2001.280.2.G178
  31. Pothoulakis, C., R. Sullivan, D. A. Melnick, G. Triadafilopoulos, A. S. Gadenne, T. Meshulam, and J. T. LaMont. 1988. Clostridium difficile toxin A stimulates intracellular calcium release and chemotactic response in human granulocytes. J. Clin. Invest. 81: 1741-1745. https://doi.org/10.1172/JCI113514
  32. Ren, D., H. C. Tu, H. Kim, G. X. Wang, G. R. Bean, O. Takeuchi, et al. BID, BIM, and PUMA are essential for activation of the BAX- and BAK-dependent cell death program. Science 330: 1390-1393. https://doi.org/10.1126/science.1190217
  33. Shin, J. I., J. H. Shim, K. H. Kim, H. S. Choi, J. W. Kim, H. G. Lee, et al. 2008. Sensitization of the apoptotic effect of gamma-irradiation in genistein-pretreated CaSki cervical cancer cells. J. Microbiol. Biotechnol. 18: 523-531.
  34. Teter, K., M. G. Jobling, D. Sentz, and R. K. Holmes. 2006. The cholera toxin A1(3) subdomain is essential for interaction with ADP-ribosylation factor 6 and full toxic activity but is not required for translocation from the endoplasmic reticulum to the cytosol. Infect. Immun. 74: 2259-2267. https://doi.org/10.1128/IAI.74.4.2259-2267.2006
  35. Warny, M., A. C. Keates, S. Keates, I. Castagliuolo, J. K. Zacks, S. Aboudola, et al. 2000. p38 MAP kinase activation by Clostridium difficile toxin A mediates monocyte necrosis, IL-8 production, and enteritis. J. Clin. Invest. 105: 1147-1156. https://doi.org/10.1172/JCI7545
  36. Yun, J. W., S. K. Kim, and H. Kim. Prolonged protein turnover of glyceraldehyde-3-phosphate dehydrogenase by phospholipase C-gamma 1 is critical for anchorage-independent growth and ATP synthesis in transformed cells. Cancer Invest. 29: 93-101. https://doi.org/10.3109/07357907.2010.535062

Cited by

  1. Effect of Botulinum Toxin A on Proliferation and Apoptosis in the T47D Breast Cancer Cell Line vol.14, pp.2, 2013, https://doi.org/10.7314/apjcp.2013.14.2.891
  2. Anti-cancer Potential of Captopril and Botulinum Toxin Type-A and Associated p53 Gene Apototic Stimulating Activity vol.18, pp.4, 2012, https://doi.org/10.22037/ijpr.2019.1100800
  3. Botulinum Neurotoxins and Cancer—A Review of the Literature vol.12, pp.1, 2012, https://doi.org/10.3390/toxins12010032
  4. Mobilizing Toxins for Cancer Treatment: Historical Perspectives and Current Strategies vol.12, pp.6, 2020, https://doi.org/10.3390/toxins12060416
  5. Clostridium botulinum neurotoxin A induces apoptosis and mitochondrial oxidative stress via activation of TRPM2 channel signaling pathway in neuroblastoma and glioblastoma tumor cells vol.40, pp.6, 2012, https://doi.org/10.1080/10799893.2020.1781174