DOI QR코드

DOI QR Code

Cyanobacterial Diversity Shifts Induced by Butachlor in Selected Indian Rice Fields in Eastern Uttar Pradesh and Western Bihar Analyzed with PCR and DGGE

  • Kumari, Nidhi (Molecular Biology Section, Centre of Advanced Study in Botany, Banaras Hindu University) ;
  • Narayan, Om Prakash (Molecular Biology Section, Centre of Advanced Study in Botany, Banaras Hindu University) ;
  • Rai, Lal Chand (Molecular Biology Section, Centre of Advanced Study in Botany, Banaras Hindu University)
  • Received : 2011.06.08
  • Accepted : 2011.09.20
  • Published : 2012.01.28

Abstract

The present study examines the effects of 30 mg/kg butachlor on the cyanobacterial diversity of rice fields in Eastern Uttar Pradesh and Western Bihar in India. A total of 40 samples were grouped into three classes [(i) acidic, (ii) neutral, and (iii) alkaline soils], based on physicochemical and principle component analyses. Acidic soils mainly harbored Westillopsis, Trichormus, Anabaenopsis, and unicellular cyanobacteria; whereas Nostoc, Anabaena, Calothrix, Tolypothrix, and Aulosira were found in neutral and alkaline soils. Molecular characterization using 16S rRNA PCR and DGGE revealed the presence of 13 different phylotypes of cyanobacteria in these samples. Butachlor treatment of the soil samples led to the disappearance of 5 and the emergence of 2 additional phylotypes. A total of 40 DGGE bands showed significant reproducible changes upon treatment with butachlor. Phylogenetic analyses divided the phylotypes into five major clusters exhibiting interesting links with soil pH. Aulosira, Anabaena, Trichormus, and Anabaenopsis were sensitive to butachlor treatment, whereas uncultured cyanobacteria, a chroococcalean member, Westillopsis, Nostoc, Calothrix, Tolypothrix, Rivularia, Gloeotrichia, Fischerella, Leptolyngbya, and Cylindrospermum, appeared to be tolerant against butachlor at their native soil pH. Butachlor-induced inhibition of nitrogen fixation was found to be 65% (maximum) and 33% (minimum) in the soil samples of pH 9.23 and 5.20, respectively. In conclusion, low butachlor doses may prove beneficial in paddy fields having a neutral to alkaline soil pH.

Keywords

References

  1. Ateeq, B., M. A. Farah, M. N. Ali, and W. Ahmad. 2002. Clastogenicity of pentachlorophenol, 2,4-D and butachlor evaluated by Allium root tip test. Mutat. Res. 514: 105-113. https://doi.org/10.1016/S1383-5718(01)00327-8
  2. Berrendero, E., E. Perona, and P. Mateo. 2008. Genetic and morphological characterization of Rivularia and Calothrix (Nostocales, Cyanobacteria) from running water. ISJEM 58: 447-460.
  3. Boutte, C., S. Grubisic, P. Balthasart, and A. Wilmotte. 2005. Testing of primers for the study of cyanobacterial molecular diversity by DGGE. J. Microbiol. Methods 65: 542-550.
  4. Castenholz, R. W. 2001. Phylum BX. Cyanobacteria. Oxygenic photosynthetic bacteria, pp. 473-487. In R. Boone, R. W. Castenholz, and G. M. Garrity (eds.). Bergey's Manual of Systematic Bacteriology, 2nd Ed. Vol. 1. Springer, New York.
  5. Chen, W. C., J. H. Yen, C. S. Chang, and Y. S. Wang. 2009. Effects of herbicide butachlor on soil microorganisms and on nitrogen-fixing abilities in paddy soil. Ecotoxicol. Environ. Saf. 72: 120-127. https://doi.org/10.1016/j.ecoenv.2008.03.013
  6. Chen, Z., P. Jauneau, and B. Qiu. 2007. Effects of three pesticides on the growth, photosynthesis and photoinhibition of the edible cyanobacterium Ge-Xian-Mi (Nostoc). Aquat. Toxicol. 81: 256-265. https://doi.org/10.1016/j.aquatox.2006.12.008
  7. Coleman, S., R. Linderman, E. Hodgson, and R. L. Rose. 2000. Comparative metabolism of chloroacetamide herbicides and selected metabolites in human and rat liver microsomes. Environ. Health Perspect. 108: 1151-1157.
  8. Couderchet, M. and P. Boger. 1993. Changes in fatty acid profile induced by herbicide, pp. 175-181. In P. Boger and G. Sandmann (eds.). Target Assays for Modern Herbicides and Related Phytotoxic Compounds. Lewis Publ.. Boca Raton, FL, USA.
  9. Debnath, A., A. C. Das, and D. Mukherjee. 2002. Persistence and effect of butachlor and basalin on the activities of phosphate solubilizing micro-organisms in wetland rice soil. Bull. Environ. Contam. Toxicol. 69: 766-770.
  10. Desikachary, T. V. 1959. Cyanophyta. Indian Council for Agricultural Research, New Delhi.
  11. Ferris, M. J., G. Muyzer, and D. M. Ward. 1996. Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populations inhabiting a hot spring microbial mat community. Appl. Environ. Microbiol. 62: 340-346.
  12. Geitler, L. 1932. Cyanophyceae, pp. 916-931. In L. Rabenhorst (ed.). Kryptogamenflora von Deutschland, Osterreich und der Schweiz, Vol. 14. Akad Verlag, Leipzig.
  13. Kaushik, B. D. 1994. Algalization of rice in salt-affected soils. Ann. Agric. Res. 14: 105-106.
  14. Kenyon, C. N., R. Rippka, and R. Y. Stanier. 1972. Fatty acid composition and physiological properties of some filamentous blue-green algae. Arch. Mikrobiol. 83: 216-236. https://doi.org/10.1007/BF00645123
  15. Kumari, N., O. P. Narayan, and L. C. Rai. 2009. Understanding butachlor toxicity in Aulosira fertilissima using physiological, biochemical and proteomic approaches. Chemosphere 77: 1501-1507. https://doi.org/10.1016/j.chemosphere.2009.10.005
  16. Larkin, M. A., G. Blackshields, N. P. Brown, R. Chenna, P. A. McGettigan, H. McWilliam, et al. 2007. ClustalW and ClustalX version 2.0. Bioinformatics 23: 2947-2948. https://doi.org/10.1093/bioinformatics/btm404
  17. Mathes, B. and P. Boger. 2002. Chloroacetanilides affect the plasma membrane. Z. Naturforsch. 57: 843-852.
  18. Mollenhaur, D., R. Bengtsson, and E. A. Lindstrom. 1999. Macroscopic cyanobacteria of the genus Nostoc: A neglected and endangered constituent of the European inland aquatic biodiversity. Eur. J. Phycol. 34: 349-360. https://doi.org/10.1080/09670269910001736412
  19. Nayak, S. and R. Prasanna. 2007. Soil pH and its role in cyanobacteria abundance and diversity in rice field soils. Appl. Ecol. Environ. Res. 5: 103-113.
  20. Nübel, U., F. Garcia-Pichel, and G. Muyzer. 1997. PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl. Environ. Microbiol. 63: 3327-3332.
  21. Pandey, V. and L. C. Rai. 2002. Interactive effects of UV-B and pesticides on photosynthesis and nitrogen fixation of Anabaena doliolum. J. Microbiol. Biotechnol. 12: 423-430.
  22. Prasanna, R., P. Jaiswal, S. Nayak, A. Sood, and B. D. Kaushik. 2009. Cyanobacterial diversity in the rhizosphere of rice and its ecological significance. Indian J. Microbiol. 49: 89-97. https://doi.org/10.1007/s12088-009-0009-x
  23. Pritzer, M., J. Weckesser, and U. J. Jurgens. 1989. Sheath and outer membrane component from the cyanobacterium Fischerella sp. PCC 7414. Arch. Microbiol. 153: 7-11. https://doi.org/10.1007/BF00277533
  24. Roger, P. A. 1990. Microbiological aspects of pesticide use in wetland rice fields. Presented in a workshop on the environmental and health impacts of pesticide use at IRRI, Philippines.
  25. Sigee, D. C. 2005. Freshwater Microbiology: Biodiversity and Dynamic Interactions of Microorganisms in the Aquatic Environments. John Wiley and Sons.
  26. Sigler, W. B., R. Bachofen, and J. Zeyer. 2003. Molecular characterization of endolithic cyanobacteria inhabiting exposed dolomite in central Switzerland. Environ. Microbiol. 5: 618-627. https://doi.org/10.1046/j.1462-2920.2003.00453.x
  27. Sihvonen, L. M., C. Lyra, D. P. Fewer, P. Rajaniemi-Wacklin, J. M. Lehtimaki, M. Wahlsten, and K. Sivonen. 2007. Strains of the cyanobacterial genera Calothrix and Rivularia isolated from the Baltic Sea display cryptic diversity and are distantly related to Gloeotrichia and Tolypothrix. FEMS Microbiol. Ecol. 61: 74-84 https://doi.org/10.1111/j.1574-6941.2007.00321.x
  28. Singh, R. N. 1961. Role of Blue-Green Algae in the Nitrogen Economy of Indian Agriculture. ICAR, New Delhi.
  29. Srivastava, A. K., A. Ara, P. Bhargava, Y. Mishra, S. P. Rai, and L. C. Rai. 2007. A rapid and cost effective method of genomic DNA isolation from cyanobacterial mat and soil suitable for genomic fingerprinting and community analysis. J. Appl. Phycol. 19: 373-382. https://doi.org/10.1007/s10811-006-9144-5
  30. Srivastava, A. K., P. Bhargava, A. Kumar, L. C. Rai, and B. A. Neilan. 2009. Molecular characterization and the effect of salinity on cyanobacterial diversity in the rice fields of Eastern Uttar Pradesh, India. Saline Syst. 5: 4. https://doi.org/10.1186/1746-1448-5-4
  31. Stewart, W. D. P., G. P. Fitzgerald, and R. H. Burris. 1968. Acetylene reduction by nitrogen fixing blue-green algae. Arch. Microbiol. 62: 336-348.
  32. Tamiselvam, B., G. Gopalaswamy, and S. Kannaiyan. 2002. Influence of butachlor on the growth, chlorophyll content and ammonia excretion by acid tolerance cyanobacteria. Indian J. Weed Sci. 34: 158-159.
  33. Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molec. Biol. Evol. 24: 1596-1599. https://doi.org/10.1093/molbev/msm092
  34. Tirkey, J. and S. P. Adhikary. 2005. Cyanobacteria in biological soil crusts of India. Curr. Sci. 89: 515-521.
  35. Vargas, M. A., H. Rodríguez, J. Moreno, H. Olivares, J. A. Del Campo, J. Rivas, and M. G. Guerrero. 1998. Biochemical composition and fatty acid content of filamentous nitrogenfixing cyanobacteria. J. Phycol. 34: 812-817. https://doi.org/10.1046/j.1529-8817.1998.340812.x
  36. Varshney, J. G. and K. K. Barman. 2007. Can butachlor be a component of sustainable rice farming: An Indian perspective, pp. 315-323. In P. G. Chengappa, N. Nagaraj, and R. Kanwar (eds.). Proceedings of International Conference on 21st Century Challenges to Sustainable Agri-food systems. I. K. Int. Publishing House, ND.
  37. Watanabe, A. 1962. Effect of nitrogen-fixing blue-green alga Tolypothrix tenuis on the nitrogenous fertility of paddy soil and on the crop yield of rice plant. J. Gen. Appl. Microbiol. 8: 85-91. https://doi.org/10.2323/jgam.8.85
  38. Whitton, B. A. 2000. Soils and rice fields, pp. 233-25. In B. A. Whitton and M. Potts (eds.). The Ecology of Cyanobacteria. Kluwer Academic Publishers, Dordrecht.
  39. Wilmotte, A. and M. Herdman. 2001. Phylogenetic relationships among the cyanobacteria based on 16S rRNA sequences, pp. 487-493. In D. R. Boone and R. W. Castenholz (eds.). Bergey's Manual of Systematic Bacteriology, 2nd Ed. Vol. 1. Springer, New York.
  40. Zargar, M. Y. and G. H. Dar. 1990. Effect of benthiocarb and butachlor on growth and nitrogen fixation by cyanobacteria. Bull. Environ. Contam. Toxicol. 45: 232-234. https://doi.org/10.1007/BF01700189
  41. Zeng, H. H. and C. M. Ye. 2001. Hydrolysis of chloroacetanilide herbicides acetochlor and butachlor. Environ. Sci. (China) 20: 168-171.

Cited by

  1. Genetic Diversity and Molecular Phylogeny of Cyanobacteria from Sri Lanka Based on 16S rRNA Gene vol.19, pp.4, 2014, https://doi.org/10.4491/eer.2014.035
  2. Nostoc muscorum and Phormidium foveolarum differentially respond to butachlor and UV-B stress vol.26, pp.4, 2020, https://doi.org/10.1007/s12298-019-00754-5