DOI QR코드

DOI QR Code

Accurate Face Pose Estimation and Synthesis Using Linear Transform Among Face Models

얼굴 모델간 선형변환을 이용한 정밀한 얼굴 포즈추정 및 포즈합성

  • Received : 2011.12.16
  • Accepted : 2012.04.29
  • Published : 2012.04.30

Abstract

This paper presents a method that estimates face pose for a given face image and synthesizes any posed face images using Active Appearance Model(AAM). The AAM that having been successfully applied to various applications is an example-based learning model and learns the variations of training examples. However, with a single model, it is difficult to handle large pose variations of face images. This paper proposes to build a model covering only a small range of angle for each pose. Then, with a proper model for a given face image, we can achieve accurate pose estimation and synthesis. In case of the model used for pose estimation was not trained with the angle to synthesize, we solve this problem by training the linear relationship between the models in advance. In the experiments on Yale B public face database, we present the accurate pose estimation and pose synthesis results. For our face database having large pose variations, we demonstrate successful frontal pose synthesis results.

본 논문은 Active Appearance Model(AAM)을 사용하여 주어진 얼굴영상의 포즈추정과 임의 포즈합성 방법을 설명한다. AAM은 다양한 응용분야에 성공적으로 적용되어지고 있는 예제기반 학습모델로 예제들의 변화정도를 학습한다. 그러나 하나의 모델로는 각도 변화가 큰 포즈 변화량을 수용하기 어렵다. 본 논문은 좁은 범위의 각도 변화를 다루는 모델을 포즈별로 생성한다. 주어진 포즈 얼굴을 다룰 수 있는 모델을 이용하여 정확한 포즈추정과 합성이 가능하다. 이때 합성하고자 하는 포즈의 각도가 포즈 추정을 위해 사용된 모델에 학습되어 있지 않은 경우, 미리 학습된 모델간의 선형관계를 통해 문제를 해결한다. Yale B 공개 얼굴 데이터베이스에 대한 실험을 통해 포즈추정 및 합성 정확도를 보이고, 자체 수집한 포즈변화가 큰 얼굴영상에 대한 성공적인 정면 합성 결과를 제시한다.

Keywords

References

  1. F. Wheeler, R. Weiss, and P. Tu, "Face Recognition at a Distance System for Surveillance Applications," Proc. of IEEE Int'l Conf. on Biometrics: Theory Applications and Systems, pp. 1-9, 2010.
  2. N. Bellotto, E. Sommerlade, B. Benfold, C. Bibby, I. Reid, D. Roth, C. Fernández, L. V. Gool, and J. Gonzàlez, "A Distributed Camera System for Multi-Resolution Surveillance," Proc. of ACM/ IEEE Int'l Conf. on Distributed Smart Cameras, pp. 1-8, 2009.
  3. N. Krahnstoever, T. Yu, S.-N. Lim, K. Patwardhan, and P. Tu, "Collaborative Realtime Control of Active Cameras in Large Scale Surveillance Systems," Proc. of Workshop on Multi-camera and Multi-modal Sensor Fusion Algorithms and Applications, pp. 1-12, 2008.
  4. T.F. Cootes, G.J. Edwards, and C.J. Taylor. "Active Appearance Models," IEEE Trans. on Pattern Anal. Mach. Intelligence, Vol.23, No. 6, pp. 681-685, 2001. https://doi.org/10.1109/34.927467
  5. S.Baker and I.Matthews. "Lucas-Kanade 20 years On: A Unifying Framework," Int'l Journal of Computer Vision, Vol.56, No.3, pp. 221-255, 2004. https://doi.org/10.1023/B:VISI.0000011205.11775.fd
  6. T.F. Cootes, G.V. Wheeler, K.N. Walker, and C.J. Taylor, "View-Based Active Appearance Models," Image and Vision Computing, Vol. 20, Issues. 9-10, pp. 657-664, 2002. https://doi.org/10.1016/S0262-8856(02)00055-0
  7. C. Hu, R. Feris, and M. Turk, "Real-time View-based Face Alignment using Active Wavelet Networks," Proc. of IEEE Int'l Workshop on Analysis and Modeling of Faces and Gestures, pp. 215-221, 2003.
  8. M. Uzumcii, A.F. Frangi, M. Sonka, J.H. Reiber, and B.P. Lelieveldt, "ICA vs. PCA Active Appearance Models: Application to Cardiac MR Segmentation", LNCS, No. 2878, pp. 451-458, 2003.
  9. S. Mika, B. Scholkopf, A. Smola, G. Ratsch, K. Muller, M. Scholz, and G. Ratsch, "Kernel- PCA and De-Noising in Feature Spaces," Proc. of Advances in Neural Information Processing Systems, Vol.11, pp. 536-542, 1999.
  10. C.M. Christoudias and T. Darrell, "On Modeling Nonlinear Shape-and-Texture Appearance Manifolds," Proc. of the IEEE Int'l Conf. on CVPR, Vol.2, pp. 1067-1074, 2005.
  11. E. M. Chutorian and M. M. Trivedi, "Head Pose Estimation in Computer Vision: A Survey," IEEE Trans. on Pattern Recognition and Machine Intelligence, Vol.31, No.4, pp. 607-626, 2008.
  12. A.U. Batur and M.H. Hayes, "Adaptive Active Appearance Models," IEEE Trans. on Image Processing, Vol.14, No.11, pp. 1707-1720, 2005. https://doi.org/10.1109/TIP.2005.854473
  13. 이철웅, 김일민, 조세홍, "한국 표준 얼굴 데이터를 적용한 3D 가상얼굴성형 제작 시스템 설계 및 구현," 한국멀티미디어학회논문지, Vol.12, No.5, pp. 737-744, 2009.

Cited by

  1. A Study on Facial Wrinkle Detection using Active Appearance Models vol.12, pp.7, 2014, https://doi.org/10.14400/JDC.2014.12.7.239