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Abstract 

 
We propose an adaptive method for detecting plagiarized pairs from a large set of source code. 
This method is adaptive in that it uses an adaptive algorithm and it provides an adaptive 
threshold for determining plagiarism. Conventional algorithms are based on greedy string 
tiling or on local alignments of two code strings. However, most of them are not adaptive; they 
do not consider the characteristics of the program set, thereby causing a problem for a program 
set in which all the programs are inherently similar. We propose adaptive local alignment—a 
variant of local alignment that uses an adaptive similarity matrix. Each entry of this matrix is 
the logarithm of the probabilities of the keywords based on their frequency in a given program 
set. We also propose an adaptive threshold based on the local outlier factor (LOF), which 
represents the likelihood of an entity being an outlier. Experimental results indicate that our 
method is more sensitive than JPlag, which uses greedy string tiling for detecting 
plagiarism-suspected code pairs. Further, the adaptive threshold based on the LOF is shown to 
be effective, and the detection performance shows high sensitivity with negligible loss of 
specificity, compared with that using a fixed threshold. 
 
 
Keywords: Plagiarism, program plagiarism detection, adaptive local alignment, similarity 
measurement, software similarity, local outlier factors. 
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1. Introduction 

Plagiarism of general documents is becoming a major problem in society. It is also becoming 
a very serious problem in universities. According to one survey, more than 5% of college 
students have had plagiarism-related experiences [1]. Recently, the President of Hungary 
resigned as it was alleged that his dissertation had been plagiarized1. Further, an IOC member 
of Korea who was elected as a member of parliament, has been investigated for suspected 
plagiarism of his thesis2. Since plagiarism occurs frequently in universities, it is almost 
impossible for an instructor to accurately appraise all students’ work manually.  

The problem of detecting plagiarism is becoming more serious in the area of computer 
programming. Compared to general text plagiarism, it is very hard for instructors to detect 
plagiarism in source codes. If the number of programs to inspect is large, it is nearly 
impossible to compare every pair of programs manually. For example, if there are more than 
1,000 source codes in a program set, the number of comparisons required is about 500,000. A 
lot of effort is required for a human inspector to examine all the code pairs in a large program 
and detect the plagiarized ones. Consequently, many automatic systems such as JPlag, YAC3, 
and MOSS are used to detect plagiarism in general texts and source codes [2][3][4][5][6][7]. 

In common with the detection of plagiarism in general text documents, there are a number 
of requirements for the detection of plagiarism in program source codes. First, the plagiarism 
detection should be quantitative and specific enough with respect to the similar regions and to 
the plagiarizing techniques. A plagiarism detection system should indicate what parts of the 
two programs are similar and how they are plagiarized. Since the detection system is not a 
human expert, it may fail to detect the plagiarism on a semantic level such as data structures 
and algorithms. In fact, most conventional detection systems largely detect syntax-level 
plagiarism and are being extended to cope with structure-level plagiarism. However, the key 
requirement is that the detection system should be sensitive enough to detect the suspicious 
region as much as possible. 

Second, it is hard to collect actual examples of plagiarized source code pairs included in a 
large program set with the same functional behavior. To verify the effectiveness of a 
plagiarism detection system, many plagiarized source code pairs are needed. However, since 
plagiarism itself is illegal, plagiarized programs are not easily secured. Although plagiarized 
source codes can be made artificially, they can hardly be regarded as actual plagiarized data in 
a strict sense. This may be a problem as programs with the same functional behavior can be 
inherently similar to one another.  

Finally, there is no standard reference model regarding whether one of two similar 
programs plagiarized the other. For example, if two students are assigned to write bubble sort 
programs, then the resulting programs will inevitably be similar. Lim et al. defined this case as 
pseudo-plagiarism that is not a result of plagiarism, but comes from a strong functional 
requirement [8]. The distribution of the similarity score of a program group is dependent on 
the program set itself. If we use a fixed threshold score of similarity to determine 
plagiarism-suspected pairs, it may cause over detection or misdetection. Therefore, an 

                                                           
1 F. Facsar, “Hungary’s president quits over alleged plagiarism,” CNN, April 2, 2012 
(http://edition.cnn.com/2012/04/02/world/europe/hungary-president-resigns). 
2 P. Hersh, “Another plagiarist on IOC?” Chicago Tribune, April 13, 2012 
(http://www.chicagotribune.com/sports/globetrotting/chi-another-plagiarist-on-ioc-20120412,0,7137694.column). 
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adaptive threshold that takes into consideration the similarity distribution of the program set is 
necessary to handle pseudo-plagiarism cases. 

In this paper, we propose a new, adaptive method for detecting the blocks in given program 
pairs that are similar. Our method is a variant of the local alignment [9]; in which we changed 
the similarity matrix to adaptively reflect the keyword frequencies for a given program group. 
We extended this basic idea [10] and constructed an adaptive similarity matrix from the 
probabilities of keyword occurrences for a given program set.  

Further, our new method determines the cut-off threshold adaptively. It based on the idea 
that the code pairs that have a high similarity score regarded as outliers. This implies that the 
plagiarism detection problem reduced to that of outlier detection. Specifically, this paper 
proposes a new criterion based on the local outlier factor (LOF) to determine the cut-off 
threshold of similarity. The LOF indicates the degree of outlierness of each object in a dataset 
[11]. By calculating the LOF of each code pair using their similarity score, the cut-off 
threshold for detecting the plausible plagiarism can be adaptively determined using the LOF. 

From experiments using program groups including artificially plagiarized source codes, 
we show that adaptive local alignment is especially effective in detecting plagiarism of source 
codes: in particular, it is superior to JPlag. The experimental results indicate that adaptive local 
alignment is more sensitive than greedy string tiling (GST). Further, adaptive threshold based 
on the LOF is found to be more effective than its static counterpart, which implies that the 
detection of plagiarized code pairs determined by the adaptive threshold is more sensitive, 
regardless of the program groups, than methods using the fixed threshold. 

This paper is organized as follows. Chapter 2 discusses related work on the detection of 
plagiarism of source codes. Chapter 3 gives an overview of our proposed method and explains 
each procedure for detecting plagiarized code pairs in detail. Chapter 4 outlines the 
implementation of our system. Chapter 5 describes some experimental results. Chapter 6 
concludes this paper.  

2. Related Work 
In this section, we will briefly review previously released plagiarism detection systems and the 
algorithms that were adopted in those systems. We will also explain the local alignment 
algorithm that is being used in computational biology. 

2.1 Plagiarism Detection Systems and Algorithms 
A plagiarized program can be defined as a program that has been produced from another one 
without a thorough understanding of the source code [12]. There are many previously released 
systems for detecting plagiarism. They can be classified into two categories: (1) systems for 
general text documents and (2) systems for program source codes. Since plagiarism in 
plain-text prevails widely compared to plagiarism in software, the detection of plagiarism in 
plain-text documents has been studied for a long time in information retrieval and document 
processing disciplines. Recently, concerns about program plagiarism have been increasing due 
to the many clever plagiarism tools and advanced Internet search technologies currently 
available. Table 1 shows the application domains and the detection algorithms that the 
previously released systems were based on. 

As shown in Table 1, there are some detection systems for program source code. JPlag is a 
stable system for detecting plagiarism. It finds pairs of similar programs among a given set of 
programs [4]. It is written in Java and analyzes program source code written in Java, Scheme, 
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C, or C++. JPlag takes as input a set of programs, compares those programs pairwise 
(computing for each pair a total similarity value and a set of similarity regions), and provides 
as output a set of HTML pages that allow for exploring and understanding the similarities 
found in detail. Fig. 1 shows the JPlag result display page. The algorithm used in JPlag to 
compare program pairs is GST. 

Table 1. Plagiarism detection tools for plain texts and for program source codes. 

System Name Domain Base Method Usage Cost 
Plagiarism.org Plain text Fingerprint On-line Free 
IntegriGuard Plain text Unknown On-line $4.95/Month 

EVE2 Plain text Unknown Stand-alone $19.99 
CopyCatch Student reports Lexical matching Stand-alone Free 

MatchDetectReveal Plain text Suffix Tree matching DB Service Free 
SCAM Digital library Vector-space model DB Service Free 
YAP3 Software greedy-string-tiling Stand-alone Free 

Clonechecker Software Unknown Stand-alone Commercial 
MOSS Software Winnowing Web Service Free 
JPlag Software greedy-string-tiling Web Service Free 
SID Software Data Compression Web Service Free 
SIM Software Local Alignment Stand-alone Free 

CodeMatch Software Fingerprint Stand-alone Commercial 
Viper Plain text Unknown On-line Free 

PlagiarismDetect.com Webpage Unknown Web Service $4.95 
Copyscape Webpage Unknown Web Service $0.05/Search 

MOSS is an automatic system for determining the similarity of programs, and is a 
widely-used plagiarism detection service available on the Internet since 1997 [7]. The system 
is based on winnowing, a local fingerprinting algorithm, and can analyze program source code 
written in C, C++, Java, C# and so on. Since fingerprinting is a relatively simple method, the 
range of programming languages supported can be wider than other methods. 

Three methodologies for source code plagiarism detection are widely used. One 
methodology is based on software metric comparison [13][14][15]. For example, Halstead’s 
software metric [16] used to check the similarity of two programs. Fingerprinting is also a 
popular methodology that used in the early stages of a detection system. Fingerprinting is a 
procedure that extracts information from source code such as frequency of keywords and 
unique symbol count. Fingerprints are easy to compute, but the effectiveness of this approach 
is not very good. 

Another group of methods compares program structures. This approach is less sensitive to 
plagiarism attack techniques (i.e., techniques that are used to defeat plagiarism detection 
methods). Structure-based plagiarism detection methods generally consist of two steps. The 
first step is the construction of other forms of objects that can be easily compared, from the 
given programs. These generated objects are typically token strings. The second step is the 
comparison of these two token strings by some sort of string matching algorithms. Not only 
the algorithms for finding common intervals [17], but other clever methods such as 
greedy-string-tiling [4], local alignment [3], and parse tree comparison [18][19] are also 
widely used for structural comparison [20][21]. For comparing the parse trees, a tree matching 
algorithm is used instead of string matching algorithms. 
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Fig. 1. A snapshot of JPlag results displaying a pair of programs to be examined [4]. 

The last category of methods for measuring the similarity of two programs is based on the 
Kolmogorov complexity of information theory [22]. The Kolmogorov complexity of a given 
string is defined by the length of the minimum string that is required to represent the program. 
This length represents the amount of information included in that string. In reality, this 
minimum length is evaluated by compressing the given string using a compression algorithm, 
say RSA. If two programs, say A and B, are very similar, the size of the compressed result of 
the concatenation of A and B will be similar to that of compressing A or B. 

Although the Kolmogorov complexity based method is effective for comparing two 
documents, it is hard to locate the regions that are very similar in the given documents. 
Furthermore, programs may contain unreachable codes, but this method is not sensitive to this 
kind of attack. In spite of this weakness, this method can be effectively used for narrowing the 
candidate documents by selecting the documents that are similar before applying a discreet 
comparison method to them. 

2.2 Local Alignment 
Local alignment was defined by Smith and Waterman [9] in 1981, and is usually called the 
Smith-Waterman algorithm. The Smith-Waterman algorithm was originally developed to find 
similar regions in two nucleotide or protein sequences. Local alignment adopts the dynamic 
programming technique, which constructs the optimal solution of a problem from the optimal 
solutions of subproblems that are usually cached in a table to avoid recomputation.  

Local alignment focuses on comparing two linearized sequences in order to find the 
longest subsequences that closely match. The score of a sequence block is the sum of the 
individual scores, and the optimal alignment score is the score of the highest-scoring sequence 
block. Formally, two sequences of P and Q are given, where pi is an element of P and qj is an 
element of Q (i ≤ |P|, j ≤ |Q|), where the individual score of score(pi, qj) is defined as follows: 
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 score pi, qj = m, if  pi≠qj
d, if  pi=qj

 

where m is the score for a match and d for a mismatch; m is generally positive whereas d is 
negative. The optimal alignment score score(i, j) is computed using the following function: 

	score(i, j)= max ⎩⎨
⎧ score (i, j − 1)+ g

score (i − 1, j − 1)+ score (pi, qj)
score (i − 1, j)+ g

0 ⎭⎬
⎫

 

Here, g is the penalty for matching using a gap. The above equation indicates that the 
alignment score up to i and j is the maximum of four cases: gap insertion, matching (including 
mismatching), gap deletion, and no matching. 

3. The Adaptive Local Alignment Algorithm 

3.1 Procedural Overview 
In this section, we describe a new model that is required to adaptively measure the similarity 
between two programs. Our algorithm that detects plagiarism using local alignment operates 
in three phases: the program linearization phase, the local alignment phase, and the similarity 
measurement phase. Fig. 2 shows the plagiarism detection procedure used by adaptive local 
alignment. 

 
Fig. 2. The similarity measurement procedure using the adaptive methods 

The dashed boxes in Fig. 2 show the adaptive parts of our proposed method. The first box 
indicates the procedure for adaptive local alignment, while the second indicates the procedure 
for producing the adaptive threshold. These two steps highlight the basic idea underlying our 
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adaptive method. 

3.2 Program Linearization 
In the first step of the procedure depicted in Fig. 2 (Program Linearization), the system 
generates the token sequences from a given program set. Program linearization is the first step 
that extracts the sequence of predefined tokens from each program. The keyword vector 
prescribes the set of tokens that should be extracted from the given programs. Therefore, the 
keyword vector is defined according to the host programming language. In addition to 
keywords, the keyword vector also includes the operator symbols since the aim of the keyword 
vector is to reflect the structural characteristics of programs—such as control flow, 
subprograms, code blocks, and so on. 

The linearization procedure of our system has a novel feature—namely, static 
tracing—which cannot be found in other systems. Static tracing is a technique that executes a 
program statically at the syntax level to generate the token sequence in that order. In order to 
execute a program syntactically, the syntax tree is constructed prior to the tracing. Fig. 3 
shows an example of the result of program linearization utilizing static tracing. 
 

 
Fig. 3. A simple source code and its token sequence generated from the static tracing. 

The left half of Fig. 3 shows a simple C program that swaps the contents of two integer 
variables using the function swap. The right half of Fig. 3 is the corresponding token 
sequence that is generated by the linearization procedure using static tracing. The effect of 
static tracing is found around the function call swap. When the linearization 
procedure encounters a function call and the function is a user-defined one that has not been 
traced yet, the linearization procedure records the function call, FUNC_CALL, and continues 
to trace the body of that function. Tracing the called function statically, it returns to the calling 
site and continues. When it encounters system-defined functions, tracing is not performed and 
UNREACHABLE_FUNC is all that is recorded.  

3.3 Adaptive Local Alignment 
Adaptive local alignment is a variant of the original local alignment with respect to the 
similarity matrix. We compute the similarity of two programs depending on the set of 
programs that contains the subject programs. The rationale is that the similarity of two 
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programs should not be determined solely on the basis of the programs themselves, but rather 
the characteristics of the program group that they are involved in should be taken into 
consideration. 

The basic strategy of adaptive local alignment is that the matching score of a keyword 
should reflect the frequencies of keywords. More specifically, we attribute matching scores to 
keywords in inverse proportion to their frequencies; we attribute high scores to low frequency 
keywords and low scores to high frequency keywords. The same rule is also applied as the 
penalty for mismatches. Since it is rare to see low frequency keywords being used by two 
programs at the same time, two programs that both use keywords of low frequency together 
should be considered quite similar. In this respect, our approach is more natural than the 
original local alignment. 

The adaptive approach is immune to typical plagiarizing attacks such as those involving 
the insertion or deletion of meaningless or dummy keywords. Table 2 shows some of the 
highest and lowest frequency keywords in the program group ICPC06-3, which consists of 
157 programs (See Table 3). As shown in Table 2, assignments (‘=’) and block delimiters 
(‘{’and ‘}’) are the most frequently used keywords. Since the adaptive approach weakens the 
penalties for mismatching of these keywords, inserting or deleting these keywords has less 
effect. In contrast, inserting or deleting low frequency keywords such as ‘struct’ or 
‘switch’ has a lot of influence on the overall similarity computed. 

Table 2. The keywords with high and low frequencies in a typical program group.  
The total number of keywords extracted from this group is 13,104. 

 
The crucial part of the adaptive local alignment is the similarity matrix. Just like the original 
local alignment, the similarity matrix M is an (r+1)ⅹ(r+1) matrix if the kinds of keywords 
considered is r because the special gap symbol takes part as the (r+1)-th column and row index 
of the matrix. Each element M(ki, kj) of the similarity matrix represents the score or the penalty 
for matching or mismatching: it represents a matching score if ki = kj and a mismatching 
penalty if ki 

 

≠ kj. For gap columns and gap rows, the elements represent penalties for inserting 
or deleting gap (inserting gap to the other side) symbols. 

In order to determine the adaptive similarity matrix, the frequencies of keywords should be 
computed beforehand. Let the entire set of programs that consist of n programs be 
P={p1,p2,…, pn} and assume that occur(p, k) denotes the number of occurrences of keyword k 
in program p. Then, the total number of occurrences of k in program group P can be defined 
as	occur(P, k)= ∑ occur	(p, k)p∈P . Based on this definition, the frequency fi

	Pof a keyword ki in 
a program group P is defined as follows: 

fi
	P=	 occur(P, ki) 	 occur(P, kj)

r

j=1

  

High frequency keyword Frequency Low frequency keyword Frequency 
Assignment ‘=’ 12.64% ‘struct’ 0.01% 
Block Start ‘{’ 10.26% ‘delete’ 0.01% 
Block End ‘}’ 10.26% ‘bool’ 0.02% 

Equal ‘==’ 6.40% Assignment ‘-=’ 0.02% 
‘if’ 6.28% ‘switch’ 0.02% 
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Since the denominator ∑ occur(P, kj)r
j=1  denotes the sum of the number of occurrences of all 

the keywords, the frequency fi
	P of a keyword ki lies between 0 and 1 (0 ≤ fi

	P ≤ 1). 
Using the keyword frequencies defined above, the adaptive similarity matrix M	P can be 

defined as follows: 

M	Pki, kj=

⎩⎪⎪⎨
⎪⎪⎧−α∙ log2 (fi

	P∙fj
	P) if  ki=kj

β∙ log2 (fi
	P∙fj

	P) if  ki≠kj

4β∙ log2 fi
	P

4β∙ log2 fj
	P−∞

if  kj is a gap and ki is not
if  ki is a gap and kj is not
if both ki and kj are gaps

 

Here, α and β are tuning parameters, and the sum of these parameters is currently set to 1 (that 
is α + β = 1). We can adjust the relative weights for a matching score and a mismatching 
penalty using these parameters. Adjusting α to be greater than β makes the matching score 
more significant in the final similarity score, while the reverse makes the mismatching penalty 
more significant. After tuning these parameters, α is set to 0.65 and β is 0.35. 

To define the similarity matrix, we take the log of the keyword frequencies. Log odds are 
generally accepted in the information theory discipline. For instance, taking log odds is 
generally adopted when comparing the intensity of two signals, especially when the ratio of 
the intensity is sufficiently large. As shown in Table 2, the ratio of the frequency of the most 
frequent keyword and the least frequent one is in the thousands. Therefore, we adopt log odds 
here. 

Disregarding the tuning parameters, the matching score is basically set to the log of the 
product of the frequencies of the keywords involved. This is the same for mismatching except 
that the mismatching penalties are set to be negative. Gap insertions or deletions should also be 
treated as penalties. Incidentally, according to the original local alignment, the penalty for 
gaps is twice that for mismatches. Reflecting the philosophy of the original local alignment, 
we make the penalty for gaps twice as large for mismatches: 2β∙ log2fi

	P∙fi
	P=4β∙ log2 fi

	P. 
The last case of two gap symbols should not occur because the aligned region can be 

enlarged to an arbitrary length if this is permitted. Hence, we set the score to be 

 

−

 

∞ to prevent 
this anomaly. This strategy is the same as the strategy that was used in the original local 
alignment. 

3.4 Similarity Measurement 
Using the similarity matrix, we can compute the similarity score of an aligned region between 
two programs. As a matter of fact, the aligned region is determined when the alignment score 
is being computed. However, it is convenient to assume that the conceptual alignment process 
takes place before the computation of the similarity score of two programs. 

Let us assume that align is a function that produces a pair of aligned blocks from two 
programs, A and B. Say the aligned block taken from A is 〈a1, a2, …, am〉  and the 
corresponding block from B is 〈b1, b2, …, bm〉, and let align produce the vector of pairs of 
corresponding keywords: 	align(A, B)= 〈(a1, b1), (a2, b2), …, (am, bm)〉 
Using the function align defined above, the absolute similarity score of two programs can be 
defined as follows: 
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SIMabs(A, B)	=  M	P(a, b)
(a, b)∈align(A, B)

 

The absolute similarity score of two programs is the sum of the individual similarity score of 
the corresponding keywords (including gaps) in the aligned region. 

In order to compare one similarity with another similarity, a normalized similarity measure 
is needed. Since SIMabs largely depends on the lengths of the subject programs, it is not 
adequate to compare the similarities themselves. For instance, if two programs A and B are 
given, where the length of keyword sequence of A is larger than that of B, the absolute 
similarity SIMabs(A, A) will be greater than SIMabs(B, B). 

One way to normalize the absolute similarity is to divide the similarity score by the sum of 
the self similarities. This definition of normalized similarity seems to be generally accepted 
[4][22] and the corresponding similarity function of SIMsum(A, B) can be defined as follows: 	SIMsum(A, B)= 

2SIMabs(A, B)
SIMabs(A, A)+ SIMabs(B, B)

 

Notice that the absolute similarity score of A and B (the numerator) is doubled in order to make 
the normalized similarity equal to 1.0 when A is identical to B. 

Another way to normalize the similarity score is to divide it by the minimum value of the 
self similarities. If a program is made up of only the crucial parts of a program and the length 
of the original program is quite long compared to the plagiarized program, the difference in the 
length of the two programs may cause the similarity to be less than expected. Since the 
plagiarized program consists purely of the copied segment of the original program, the 
similarity may seem to be 100%, but SIMsum is not. Conversely, if the plagiarized program has 
a lot of dummy statements that are not copied from the original program, then SIMsum can also 
be lower than expected. The following new similarity SIMmin can be an alternative way to 
overcome these shortcomings in SIMsum: 	SIMmin(A, B)=  

SIMabs(A, B)
min{SIMabs(A, A),  SIMabs(B, B)}

 

In this paper, we normalize the similarity score using SIMmin to prevent bias due to the large 
difference in program sizes.  

3.5 Adaptive cut-off threshold based on LOF 
It is generally considered that the higher the similarity score a program pair has, the more the 
possibility of plagiarism exists. As a result, many methods for detecting plagiarism regard 
program pairs having similarity score more than a predefined threshold as plagiarized pairs. 
As mentioned above, because the similarity distribution of program groups is dependent on the 
programming environment or the restrictions on the problem, it is important that an adaptive 
threshold for plagiarism be defined. 

We consider the code pairs that have relatively higher similarity score than others as 
outliers. Thus, the problem of detecting plagiarized code pairs can be replaced by the outlier 
detection problem. The outlier detection algorithm aims to find a small number of entities in a 
data set that appear to deviate markedly from other members of the set. This algorithm has 
been proposed for numerous applications, including credit card fraud detection, voting 
irregularity analysis, data cleansing, network intrusion, severe weather prediction, geographic 
information systems, athletic performance analysis, and other data-mining tasks [23].  
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Outlier detection methods can be divided into classes such as parametric (statistical) 
methods, nonparametric methods, and clustering based methods [24]. Statistical parametric 
methods either assume a known underlying distribution of the observations, or they are based 
on statistical estimates of unknown distribution parameters [25]. Within the class of 
non-parametric outlier detection methods, one can set apart the data-mining methods (also 
called distance-based methods). These methods are usually based on the local distance 
measures and are capable of handling large databases [11][26]. Clustering based methods 
consider the cluster of small sizes as clustered outliers. There are many clustering 
techniques—such as K-means clustering, K-nearest neighbor clustering, and support vector 
machine (SVM)—and they are used in a variety of applications [27][28][29]. 

From among these algorithms, we use the local outlier factor (LOF) algorithm to define a 
criterion for plagiarism [11]. The LOF algorithm is a density-based outlier detection algorithm 
that utilizes the concept of a local outlier that captures the degree to which an object is an 
outlier based on the density of its local neighborhood. In this method, each entity in the data set 
is assigned an LOF value that represents the likelihood of that object being an outlier. High 
LOF values are used to identify data objects that are potential outliers, whereas low LOF 
values indicate normal data objects [30]. In addition, the LOF algorithm does not need any 
assumption on the similarity distribution of the data set. 

In our method, the similarity values between program source codes are the data objects. To 
get the LOF value of a data object, we first calculate the k

 

−distance(A), which is defined as the 
distance of the object A to the k nearest neighbor. We then calculate reachability

 

−distance of A 
from B, which is the true distance between two objects. The reachability-distance is defined as 
follows: 

reachability-distancek(A, B)= max{k-distance(B), d(A, B)} 

Here, d(A, B) represents the Euclidean distance between A and B. Using this distance measure, 
we can calculate the local reachability density of an object A; that is, the quotient of the 
average 

 

reachability−distance of the object A from its neighbors.  

lrd(A) = 
|Nk(A)|∑ reachability-distancek(A, B)B∈Nk(A)

 

Here, Nk(A) means the sets of k nearest neighbors. Thus, the LOF of object A can be calculated 
as follows: 

LOFk(A)= 
∑ lrd(B)B∈Nk(A)|Nk(A)| lrd(A)  

An LOF value close to one indicates that the corresponding object is comparable to its 
neighbors (and thus not an outlier). An object whose LOF is less than one is in a denser region 
(which would make it an inlier), while the objects whose LOF values are significantly larger 
than one indicate outliers. 

Fig. 4 shows the similarity distribution of the program group and the relation between the 
similarity score and the LOF value of each code pair belonging to that group. The distribution 
of the similarity score of a program group seems to follow the Log-Normal distribution in 
which most code pairs have similarity score in the 5–40% range, as shown in Fig. 4(a). The 
portion of the similarity score where most code pairs are concentrated may vary depending on 
the program groups. 
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Fig. 4. The similarity distribution of a program group and the relation between the similarity scores and 
the LOF values of code pairs. 

From Fig. 4(b), it can be seen that the LOF values of similarity from about 5

 

−40% have 
approximately 1.0 and high similarity scores have high LOF values. If we define the similarity 
threshold of plagiarism using LOF values, the detection can be resilient to changes in the 
similarity distribution. This is the basic idea underlying the adaptive threshold. 

4. Implementation 
In this section, we describe the implementation details of our proposed adaptive plagiarism 
detection system. The system was developed using Visual Studio 2005 with Extreme Toolkit 
ver 9.3, and is currently able to detect plagiarism in C, C++, and Java source codes. In addition, 
it can be extended to support other languages once the parser for those languages are available.  

The system comprises three modules: (1) program linearizer, (2) similarity analyzer, and (3) 
viewer modules. The program linearizer was implemented by modifying the parsing module 
of OpenC++, a metacompiler for C++ [31]. The similarity analyzer computes the similarity 
score for every pair of programs using adaptive local alignment and the LOF algorithm. 
Finally, the viewer module for the system was implemented using the user interface library of 
Extreme toolkit. Fig. 5 depicts screenshots of the system. 

 

 
Fig. 5. The similarity table summarizing the similarity scores for the pairs in a program group 
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The set of programs to be analyzed is normally stored in a folder and given as input to the 
system. The similarity scores of all program pairs are calculated and stored as a score table. 
The screenshots in Fig. 5 show the similarity table analyzed for a given set of programs. The 
right pane of the figure shows the set of control parameters, where the actual values can be 
modified.  

 

 

Fig. 6. The source code view that highlights the region of similar blocks respectively from the pair of 
source codes. 

Fig. 6 depicts the source codes comparison window, which is shown when the user clicks 
on a row in the similarity table. The user can inspect the pair of source codes side by side in 
this window, where the regions of similarity in the code pairs are highlighted. Although static 
tracing is used to compare the programs, the comparison window shows the programs in the 
original order rather than the traced order since the original order is more natural to human 
inspectors than the traced order. 

5. Experiment 
We tested our proposed adaptive local alignment for detecting plagiarized source codes with 
14 sets of test programs. We also compared the result obtained from local alignment using the 
static similarity scoring matrix to that obtained using our proposed adaptive scoring matrix. 
(The static scoring matrix (+1 for match, 

 

−1 for mismatch, and 

 

−2 for gap) is applied in most 
of the plagiarism detection systems previously mentioned.) We also compared the 
performance of our proposed plagiarism detection system to that of JPlag in terms of 
sensitivity and specificity analysis. JPlag is a well-known system and is at present one of the 
most reliable systems for finding plagiarized source codes [12]. 

5.1 Experimental Data 
In order to evaluate the performance of our proposed system, we collected a set of test 
programs from a programming contest—specifically, the ACM International Collegiate 
Programming Contest (ICPC). The test programs used were all those submitted in the 
East-Asia preliminary and final rounds of the ICPC. All of the submitted programs were 
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written in the C/C++ language. Table 3 summarizes the statistics of the program groups in the 
experiment. 

Column N indicates the number of submitted programs in each program group. The 
number of program pairs was N(N–1)/2, shown in the Pairs column. Most of the submitted 
programs were under 100 lines of code (LOC). In the program group ICPC11-4, the maximum 
length of the programs was 1,015 lines, but most source codes other than the maximum were 
found to be useless, i.e., not a solution to the problem. The last two columns in the table denote 
the average (μ) and the standard deviation (σ) of LOC, respectively. 

5.2 Comparison of Plagiarism-Suspected Program Codes 
To find the plagiarism-suspected source codes, we first calculated the similarity of all the 
program pairs in each groups. The result of our first experiment enabled us to find a few 
plagiarism-suspected programs in the ICPC05 and ICPC11 groups. In the case of the ICPC11 
group, the source codes of three program pairs were exactly the same, and it was eventually 
confirmed by the contestants who had cheated. 

Table 3. The experimental program sets: ICPC-2005 (ICPC05), ICPC-2006 (ICPC06), and 
ICPC-2011(ICPC11) 

No. Program Group N Pairs LOC 
Max. Min. μ σ 

1 ICPC05-1 153 11,628 144 21 44.46 15.85 
2 ICPC05-2 109 5,886 139 24 65.44 22.86 
3 ICPC06-1 179 15,931 216 19 47.60 20.86 
4 ICPC06-2 174 15,051 180 19 43.78 20.46 
5 ICPC06-3 157 12,246 234 18 54.29 23.84 
8 ICPC06-4 66 2,145 110 25 59.98 35.66 
9 ICPC06-5 58 1,653 225 29 66.12 28.91 

10 ICPC06-6 60 1,770 227 38 78.43 65.89 
11 ICPC11-1 161 12,880 233 34 77.16 30.34 
12 ICPC11-3 50 1,225 367 42 92.02 47.67 
13 ICPC11-4 263 34,453 1,015 18 56.60 67.37 
14 ICPC11-8 42 861 159 35 65.14 25.67 
15 ICPC11-9 38 703 161 36 69.45 22.72 

 
We then compared the performance of three different methods: Local Alignment with 

Adaptive matrix (LAA), Local Alignment with Static matrix (LAS), and greedy string tiling 
(GST)—used in the JPlag system to determine the correctness of locating similar blocks in two 
independent programs. Fig. 7 depicts a pair of programs that were suspected to have been 
plagiarized in program group ICPC05-1. 

From Fig. 7, there is a certainty of substantial plagiarism between the two programs. First, 
it can be seen that variables t and n are swapped. Second, when compared with Pa, the block 
statements of for and if have been inserted into Pb. Finally, the looping structures in the two 
programs are quite similar. However, we note that the conditional expression of the for 
statements in lines 18–19 in Pa  and in lines 18–20 in Pb  have been modified. The two 
programs are similar enough to be suspected of being a pair of plagiarized codes. 
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(a) Pa which is suspected as a plagiarized  
source code 

(b) Pb which is suspected as a plagiarized 
version of Pa. 

Fig. 7. Plagiarism-suspected program pair obtained in the program group ICPC05-1. 

Three methods, LAA, LAS, and GST, located the region of similar blocks respectively in 
the pairs of source codes in the test sets. In the following, let LineP[a:b] denote the consecutive 
lines (statements) between the a-th line and the b-th line inclusive of program P. In our test, 
GST suspected that Line	[1:18] was plagiarized from Line	[1:18]. Furthermore, local 
alignment using the static scoring matrix reported that Line	[1:19] is suspected to have been 
plagiarized from Line	[1:20]. 

LAS and GST did not effectively detect plagiarized blocks with inserted statements and the 
rewritten conditional expression of the for statement. It is worth noting that our LAA 
successfully reported that Line	[1:28] is quite similar to Line	[1:37]. In the experiment, the 
penalty score of our adaptive local alignment for the for loop (in Line	[18:19] and in 
Line	[18:20]) was determined to be a value that was less than the penalty score (

 

−1), which 
is the static penalty value of a static local alignment. Though this case is typical, it implies that 
our algorithm is resilient to typical methods of attack such as variable name changing, operator 
changing, inserting/deleting short dummy statements, and rewriting logical expressions. 

5.3 Comparison with JPlag 
We also compared the general effectiveness of our detection technique to JPlag. Both our 
system and that of JPlag construct a sequence of tokens for the intermediate representation of 
source code, but a comparison of the algorithms revealed that the two systems are different. 
JPlag uses the greedy-string-tiling (GST) algorithm while our system uses the adaptive local 
alignment (LAA) algorithm. The main difference between the two methods is that local 
alignment is more suitable for locating the specific region of plagiarism, while GST is suitable 
for measuring the overall similarity of the two programs. Since plagiarism among codes 
happens in a few critical classes or functions, local alignment is more effective and efficient in 
detecting clever plagiarisms. 
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In order to compare the performance of different plagiarism detection systems, it is 
important that quantitative measures for the effectiveness of the systems be developed. To 
measure the effectiveness and accuracy of plagiarism detection systems, we computed two 
measures: sensitivity and specificity. These measures are commonly used in most 
experiment-based studies, such as information retrieval. In order to evaluate sensitivity and 
specificity, we counted the number of cases of true positives (TP), false positives (FP), true 
negatives (TN), and false negatives (FN). Table 4 summarizes the possible testing outputs. 

Table 4. Four different testing results of plagiarism detection TP (true positive), FP (false positive), FN 
(false negative), and TN (true negative) 

 Actual condition 
plagiarized Non-plagiarized 

Detection 
result 

Plagiarized TP FP 
Non-plagiarized FN TN 

 
TP signifies that a plagiarism pair (i.e., one program was plagiarized from the other) was 
detected as a plagiarism pair in our system. Based on these four cases, the sensitivity and 
specificity are defined as follows: 

 sensitivity(θ) = 
|TP||TP|+|FN| ,						specificity(θ)= 

|TN||TN|+|FP|	 
Here, θ is a user-defined cut-off threshold similarity for plagiarism. If a detection system S 
shows high sensitivity, then it means S is not likely to miss a real plagiarized code pair. If a 
detection system S shows high specificity, then it means S is not likely to suspect any innocent 
code as a cheated one. The most desirable case is that both sensitivity and specificity of the 
system are high, but generally speaking, the specificity usually contradicts the sensitivity. 
In order to compute sensitivity and specificity, we prepared some artificially plagiarized codes, 
(since it was hard to collect more than 10 “real” plagiarized codes in practice). We asked 10 
students to plagiarize the given source codes that were selected from programs submitted in 
the ICPC06, resulting in 10 different plagiarized programs from an ICPC06 source code. This 
experiment limited the working time for plagiarizing the source codes to at most 2 h, as was 
usually done by dishonest students. Table 5 shows the artificially generated test set of 40 
plagiarized source codes. 

In the experiment we compared our system to JPlag in terms of sensitivity and specificity 
according to the cut-off threshold θ. If Sim(A, B) is greater than a threshold , then we report 
that A is certainly plagiarized from B.  

Table 5. Overview of experiment programs including artificially plagiarized programs. 

Program 
Group 

submitted 
files 

plagiarized 
files pairs 

LOC 
Max. Min. μ. σ 

ICPC06-3 157 10 13,861 234 18 54.29 27.10 
ICPC06-4 66 10 2,850 110 25 57.89 20.56 
ICPC06-5 58 10 2,278 214 29 69.12 28.94 
ICPC06-6 60 10 2,415 227 38 76.21 27.70 

 

Fig. 8 shows the sensitivity and specificity for groups ICPC06-3, ICPC06-4, ICPC06-5, 
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and ICPC06-6. In each graph, the solid line and the dashed line indicate the result for our 
proposed adaptive system and that of JPlag, respectively. The lines that have a mark indicate 
the sensitivity graphs, while those without any mark indicates specificity graphs. The 
sensitivity graph in Fig. 8 shows that our system was more sensitive than JPlag, especially for 
the range where the cut-off threshold θ was above 70%. Since the plagiarized code pairs hardly 
exist in the low similarity score range, the sensitivity in this portion was not very important in 
the detection of code plagiarism. Therefore our system is considered more practical than JPlag 
with respect to plagiarism detection. 

Was this gain in sensitivity obtained by sacrificing specificity? The specificity graph in Fig. 
8 shows that this was not the case. For a normal cut-off threshold θ of more than 70%, the 
specificity of JPlag was no better than our specificity. In fact, our system was slightly more 
specific than JPlag when the cutoff threshold θ was above 30% for three test sets (Fig. 8(b), (c), 
and (d)). We should point out that the specificity curves of our system are smoother than those 
of JPlag, which means that the specificity of our system is more stable than JPlag when the 
cutoff threshold is varying. 

Since the specificity curve monotonically increases and the sensitivity curve 
monotonically decreases, a simple way to compare the performance of detection systems is to 
compare the y-axis value (throughput) of the intersection point of the specificity and 
sensitivity curves. The x-axis location of the intersection point of the specificity and sensitivity 
curves can be considered the tradeoff threshold balancing the minimization of false positives 
and false negatives. From the result, we can know that our adaptive method is more efficient 
and reliable than JPlag in terms of sensitivity and specificity. Table 6 shows the exact x and y 
axis value of the tradeoff threshold points of Fig. 8.  

In all program groups but ICPC06-3, it can be seen that our system is more effective than 
JPlag in the sense that both the sensitivity and the specificity (throughput column in Table 6) 
of our system is higher than those of JPlag by 3.1% on average. The programming problem for 
ICPC06-3 has a relatively low level of difficulty compared with other problems. As mentioned 
above, the adaptive local alignment used in our system is more suitable for locating the 
specific region of plagiarism, while the algorithm used by JPlag (i.e., GST) is more suitable for 
measuring the overall similarity of the two programs. This implies that JPlag can be effective 
enough for simple programs such as those in program group ICPC06-3. 

  

(a) ICPC06-3 (b) ICPC06-4 
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(c) ICPC06-5 (d) ICPC06-6 

Fig. 8. The cut-off thresholds determined by the sensitivity and the specificity. Our adaptive system is 
superior to JPlag in that both the sensitivity and the specificity where the cut-off threshold θ is above 

70%. 

Table 6. Comparison of the tradeoff threshold points of our system and JPlag 

 
Our system JPlag 

tradeoff threshold throughput tradeoff threshold throughput 
ICPC06-3 18.4 91.6% 12.5 97.5% 
ICPC06-4 43.3 96.6% 38.2 91.8% 
ICPC06-5 30.9 99.1% 27.7 90.0% 
ICPC06-6 25.8 94.2% 23.1 90.0% 
average 29.6 95.4% 25.4 92.3% 

 

5.4 Adaptively Deciding On The Cut-Off Threshold Based On LOF 
From the above experiments, we found that the detection capabilities of the system varies 
depending on the cut-off threshold of the similarity score. We compared the detection 
performance for two cases: (1) using a fixed threshold and (2) using an adaptive threshold 
taking the LOF value into consideration. For the fixed threshold, we set the cut-off threshold at 
70%, i.e., if the similarity score of a program pair was more than 70%, the pair would be 
detected as a plagiarism pair in our system. Further, for the adaptive threshold, we set the 
adaptive cut-off threshold based on the LOF value of the program pairs. The LOF value of a 
program pair depends on the distribution of similarity scores of its program group.  
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It means that although two program pairs that belong to different program groups have the 
same similarity score, their LOF values can be different.  
For the test, if the LOF value of a program pair was more than three, the pair was considered a 
plagiarism pair. Under these conditions, we tested for the detection of plagiarism pairs with 
our data set ICPC06-3, ICPC06-4, ICPC06-5, and ICPC06-6. The detection results are 
summarized in Table 7. 
For all test groups, the detection performance using an adaptive threshold was superior in 
sensitivity compared with that of using a fixed threshold with only negligible loss of the 

 

specificity (−0.2%). The second column (adaptive thresholdLOF=3) of Table 7 indicates the 
similarity score when the LOF value of a code pair was set to 3. This value varies with each 
program group because program groups have different similarity distributions. Surprisingly, 
there is wide variance in this adaptive threshold depending on the program group. This means 
that we can choose a suitable threshold adaptively depending on the program group using the 
LOF value. 

6. Conclusion and Future Work 
In this paper, we proposed a new method of automatically detecting plagiarized programs in a 
given large program set. The contributions of our method are as follows. First, we proposed an 
adaptive local alignment that changes the similarity matrix depending on the frequencies of 
the keywords of the input program set. The basic idea underlying the adaptive local alignment 
is to attribute more weight to the important keywords of the program source code. 

Second, we developed a method to adaptively determine the cut-off threshold based on the 
LOF of the similarity distribution. As the similarity distribution of a program set is dependent 
on the set of programs, it is important that the proper similarity threshold be adaptively 
determined according to the program set. The adaptive threshold can help a human inspector 
to cope with pseudo-plagiarism, in which most programs are similar but none is the result of a 
real plagiarism. Pseudo-plagiarism may occur when the problem is too simple or has a strong 
functional requirement. The adaptive thresholds for these cases will be set to a low value, 
producing lots of false positives. The human reader can eventually determine these cases as 
pseudo-plagiarism. 

Third, we conducted experiments to evaluate the performance of our system. We prepared 
a set of testing programs from an actual programming contest, the ACM International 
Collegiate Programming Contest (ICPC). Experimental results indicate that our proposed 
adaptive local alignment is especially effective in detecting plagiarism in source codes; in 
particular, it is superior to JPlag in the portion where the similarity score is greater than 70%. 
Further, the adaptive threshold outperforms the fixed threshold. Specifically, it lifts the 
sensitivity up to more than 72.5% on average with negligible loss of specificity (0.2% on 
average).  

We plan to extend our algorithm to further application of code analyses in the future. 
Currently, we are trying to reconstruct the phylogeny tree for a program set, which is based on 
the idea that a program can be considered as a form of artificial life. The code phylogeny tree 
will hopefully show the “evolution” of the source, which will help to identify the plagiarism 
groups more precisely. Also, the statistical method for determining the pseudo plagiarism may 
be effectively combined with our system; this will also be done in future work [32]. 
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