
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 6, Jun 2012 1627
Copyright ⓒ 2012 KSII

A preliminary version of this paper appeared in ICUIMC 2011, February 21-23, Seoul, Korea. This version
includes an adaptive threshold base on the LOF for determining the plarigiarism.

http://dx.doi.org/10.3837/tiis.2012.06.008

Plagiarism Detection among Source Codes
using Adaptive Methods

Yun-Jung Lee1, Jin-Su Lim2, Jeong-Hoon Ji3, Hwaun-Gue Cho4 and Gyun Woo4

1Center of U-Port IT Research and Education, Pusan National University
Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 609-735 Korea

2HA Control R&D Lab in LG Electronics
Seongsan-gu, Changwon-si, Gyeongsangnam-do 642-711 Korea

3 Korean Intellectual Property Office
Seo-Gu Daejeon 302-701 Korea

4Dept. of Computer Science and Engineering, Pusan National University
Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 609-735 Korea

[e-mail: { leeyj01, elphy, hgcho,woogyun}@ pusan.ac.kr, jhji@kipo.go.kr]
*Corresponding author: Gyun Woo

Received June 29, 2011; revised April 23, 2012; accepted May 17, 2012;

published June 25, 2012

Abstract

We propose an adaptive method for detecting plagiarized pairs from a large set of source code.
This method is adaptive in that it uses an adaptive algorithm and it provides an adaptive
threshold for determining plagiarism. Conventional algorithms are based on greedy string
tiling or on local alignments of two code strings. However, most of them are not adaptive; they
do not consider the characteristics of the program set, thereby causing a problem for a program
set in which all the programs are inherently similar. We propose adaptive local alignment—a
variant of local alignment that uses an adaptive similarity matrix. Each entry of this matrix is
the logarithm of the probabilities of the keywords based on their frequency in a given program
set. We also propose an adaptive threshold based on the local outlier factor (LOF), which
represents the likelihood of an entity being an outlier. Experimental results indicate that our
method is more sensitive than JPlag, which uses greedy string tiling for detecting
plagiarism-suspected code pairs. Further, the adaptive threshold based on the LOF is shown to
be effective, and the detection performance shows high sensitivity with negligible loss of
specificity, compared with that using a fixed threshold.

Keywords: Plagiarism, program plagiarism detection, adaptive local alignment, similarity
measurement, software similarity, local outlier factors.

1628 Lee et al.: Plagiarism Detection among Source Codes using Adaptive Methods

1. Introduction

Plagiarism of general documents is becoming a major problem in society. It is also becoming
a very serious problem in universities. According to one survey, more than 5% of college
students have had plagiarism-related experiences [1]. Recently, the President of Hungary
resigned as it was alleged that his dissertation had been plagiarized1. Further, an IOC member
of Korea who was elected as a member of parliament, has been investigated for suspected
plagiarism of his thesis2. Since plagiarism occurs frequently in universities, it is almost
impossible for an instructor to accurately appraise all students’ work manually.

The problem of detecting plagiarism is becoming more serious in the area of computer
programming. Compared to general text plagiarism, it is very hard for instructors to detect
plagiarism in source codes. If the number of programs to inspect is large, it is nearly
impossible to compare every pair of programs manually. For example, if there are more than
1,000 source codes in a program set, the number of comparisons required is about 500,000. A
lot of effort is required for a human inspector to examine all the code pairs in a large program
and detect the plagiarized ones. Consequently, many automatic systems such as JPlag, YAC3,
and MOSS are used to detect plagiarism in general texts and source codes [2][3][4][5][6][7].

In common with the detection of plagiarism in general text documents, there are a number
of requirements for the detection of plagiarism in program source codes. First, the plagiarism
detection should be quantitative and specific enough with respect to the similar regions and to
the plagiarizing techniques. A plagiarism detection system should indicate what parts of the
two programs are similar and how they are plagiarized. Since the detection system is not a
human expert, it may fail to detect the plagiarism on a semantic level such as data structures
and algorithms. In fact, most conventional detection systems largely detect syntax-level
plagiarism and are being extended to cope with structure-level plagiarism. However, the key
requirement is that the detection system should be sensitive enough to detect the suspicious
region as much as possible.

Second, it is hard to collect actual examples of plagiarized source code pairs included in a
large program set with the same functional behavior. To verify the effectiveness of a
plagiarism detection system, many plagiarized source code pairs are needed. However, since
plagiarism itself is illegal, plagiarized programs are not easily secured. Although plagiarized
source codes can be made artificially, they can hardly be regarded as actual plagiarized data in
a strict sense. This may be a problem as programs with the same functional behavior can be
inherently similar to one another.

Finally, there is no standard reference model regarding whether one of two similar
programs plagiarized the other. For example, if two students are assigned to write bubble sort
programs, then the resulting programs will inevitably be similar. Lim et al. defined this case as
pseudo-plagiarism that is not a result of plagiarism, but comes from a strong functional
requirement [8]. The distribution of the similarity score of a program group is dependent on
the program set itself. If we use a fixed threshold score of similarity to determine
plagiarism-suspected pairs, it may cause over detection or misdetection. Therefore, an

1 F. Facsar, “Hungary’s president quits over alleged plagiarism,” CNN, April 2, 2012
(http://edition.cnn.com/2012/04/02/world/europe/hungary-president-resigns).
2 P. Hersh, “Another plagiarist on IOC?” Chicago Tribune, April 13, 2012
(http://www.chicagotribune.com/sports/globetrotting/chi-another-plagiarist-on-ioc-20120412,0,7137694.column).

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 6, Jun 2012 1629

adaptive threshold that takes into consideration the similarity distribution of the program set is
necessary to handle pseudo-plagiarism cases.

In this paper, we propose a new, adaptive method for detecting the blocks in given program
pairs that are similar. Our method is a variant of the local alignment [9]; in which we changed
the similarity matrix to adaptively reflect the keyword frequencies for a given program group.
We extended this basic idea [10] and constructed an adaptive similarity matrix from the
probabilities of keyword occurrences for a given program set.

Further, our new method determines the cut-off threshold adaptively. It based on the idea
that the code pairs that have a high similarity score regarded as outliers. This implies that the
plagiarism detection problem reduced to that of outlier detection. Specifically, this paper
proposes a new criterion based on the local outlier factor (LOF) to determine the cut-off
threshold of similarity. The LOF indicates the degree of outlierness of each object in a dataset
[11]. By calculating the LOF of each code pair using their similarity score, the cut-off
threshold for detecting the plausible plagiarism can be adaptively determined using the LOF.

From experiments using program groups including artificially plagiarized source codes,
we show that adaptive local alignment is especially effective in detecting plagiarism of source
codes: in particular, it is superior to JPlag. The experimental results indicate that adaptive local
alignment is more sensitive than greedy string tiling (GST). Further, adaptive threshold based
on the LOF is found to be more effective than its static counterpart, which implies that the
detection of plagiarized code pairs determined by the adaptive threshold is more sensitive,
regardless of the program groups, than methods using the fixed threshold.

This paper is organized as follows. Chapter 2 discusses related work on the detection of
plagiarism of source codes. Chapter 3 gives an overview of our proposed method and explains
each procedure for detecting plagiarized code pairs in detail. Chapter 4 outlines the
implementation of our system. Chapter 5 describes some experimental results. Chapter 6
concludes this paper.

2. Related Work
In this section, we will briefly review previously released plagiarism detection systems and the
algorithms that were adopted in those systems. We will also explain the local alignment
algorithm that is being used in computational biology.

2.1 Plagiarism Detection Systems and Algorithms
A plagiarized program can be defined as a program that has been produced from another one
without a thorough understanding of the source code [12]. There are many previously released
systems for detecting plagiarism. They can be classified into two categories: (1) systems for
general text documents and (2) systems for program source codes. Since plagiarism in
plain-text prevails widely compared to plagiarism in software, the detection of plagiarism in
plain-text documents has been studied for a long time in information retrieval and document
processing disciplines. Recently, concerns about program plagiarism have been increasing due
to the many clever plagiarism tools and advanced Internet search technologies currently
available. Table 1 shows the application domains and the detection algorithms that the
previously released systems were based on.

As shown in Table 1, there are some detection systems for program source code. JPlag is a
stable system for detecting plagiarism. It finds pairs of similar programs among a given set of
programs [4]. It is written in Java and analyzes program source code written in Java, Scheme,

1630 Lee et al.: Plagiarism Detection among Source Codes using Adaptive Methods

C, or C++. JPlag takes as input a set of programs, compares those programs pairwise
(computing for each pair a total similarity value and a set of similarity regions), and provides
as output a set of HTML pages that allow for exploring and understanding the similarities
found in detail. Fig. 1 shows the JPlag result display page. The algorithm used in JPlag to
compare program pairs is GST.

Table 1. Plagiarism detection tools for plain texts and for program source codes.

System Name Domain Base Method Usage Cost
Plagiarism.org Plain text Fingerprint On-line Free
IntegriGuard Plain text Unknown On-line $4.95/Month

EVE2 Plain text Unknown Stand-alone $19.99
CopyCatch Student reports Lexical matching Stand-alone Free

MatchDetectReveal Plain text Suffix Tree matching DB Service Free
SCAM Digital library Vector-space model DB Service Free
YAP3 Software greedy-string-tiling Stand-alone Free

Clonechecker Software Unknown Stand-alone Commercial
MOSS Software Winnowing Web Service Free
JPlag Software greedy-string-tiling Web Service Free
SID Software Data Compression Web Service Free
SIM Software Local Alignment Stand-alone Free

CodeMatch Software Fingerprint Stand-alone Commercial
Viper Plain text Unknown On-line Free

PlagiarismDetect.com Webpage Unknown Web Service $4.95
Copyscape Webpage Unknown Web Service $0.05/Search

MOSS is an automatic system for determining the similarity of programs, and is a
widely-used plagiarism detection service available on the Internet since 1997 [7]. The system
is based on winnowing, a local fingerprinting algorithm, and can analyze program source code
written in C, C++, Java, C# and so on. Since fingerprinting is a relatively simple method, the
range of programming languages supported can be wider than other methods.

Three methodologies for source code plagiarism detection are widely used. One
methodology is based on software metric comparison [13][14][15]. For example, Halstead’s
software metric [16] used to check the similarity of two programs. Fingerprinting is also a
popular methodology that used in the early stages of a detection system. Fingerprinting is a
procedure that extracts information from source code such as frequency of keywords and
unique symbol count. Fingerprints are easy to compute, but the effectiveness of this approach
is not very good.

Another group of methods compares program structures. This approach is less sensitive to
plagiarism attack techniques (i.e., techniques that are used to defeat plagiarism detection
methods). Structure-based plagiarism detection methods generally consist of two steps. The
first step is the construction of other forms of objects that can be easily compared, from the
given programs. These generated objects are typically token strings. The second step is the
comparison of these two token strings by some sort of string matching algorithms. Not only
the algorithms for finding common intervals [17], but other clever methods such as
greedy-string-tiling [4], local alignment [3], and parse tree comparison [18][19] are also
widely used for structural comparison [20][21]. For comparing the parse trees, a tree matching
algorithm is used instead of string matching algorithms.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 6, Jun 2012 1631

Fig. 1. A snapshot of JPlag results displaying a pair of programs to be examined [4].

The last category of methods for measuring the similarity of two programs is based on the
Kolmogorov complexity of information theory [22]. The Kolmogorov complexity of a given
string is defined by the length of the minimum string that is required to represent the program.
This length represents the amount of information included in that string. In reality, this
minimum length is evaluated by compressing the given string using a compression algorithm,
say RSA. If two programs, say A and B, are very similar, the size of the compressed result of
the concatenation of A and B will be similar to that of compressing A or B.

Although the Kolmogorov complexity based method is effective for comparing two
documents, it is hard to locate the regions that are very similar in the given documents.
Furthermore, programs may contain unreachable codes, but this method is not sensitive to this
kind of attack. In spite of this weakness, this method can be effectively used for narrowing the
candidate documents by selecting the documents that are similar before applying a discreet
comparison method to them.

2.2 Local Alignment
Local alignment was defined by Smith and Waterman [9] in 1981, and is usually called the
Smith-Waterman algorithm. The Smith-Waterman algorithm was originally developed to find
similar regions in two nucleotide or protein sequences. Local alignment adopts the dynamic
programming technique, which constructs the optimal solution of a problem from the optimal
solutions of subproblems that are usually cached in a table to avoid recomputation.

Local alignment focuses on comparing two linearized sequences in order to find the
longest subsequences that closely match. The score of a sequence block is the sum of the
individual scores, and the optimal alignment score is the score of the highest-scoring sequence
block. Formally, two sequences of P and Q are given, where pi is an element of P and qj is an
element of Q (i ≤ |P|, j ≤ |Q|), where the individual score of score(pi, qj) is defined as follows:

1632 Lee et al.: Plagiarism Detection among Source Codes using Adaptive Methods

 score pi, qj = m, if pi≠qj
d, if pi=qj

where m is the score for a match and d for a mismatch; m is generally positive whereas d is
negative. The optimal alignment score score(i, j) is computed using the following function:

	score(i, j)= max ⎩⎨
⎧ score (i, j − 1)+ g

score (i − 1, j − 1)+ score (pi, qj)
score (i − 1, j)+ g

0 ⎭⎬
⎫

Here, g is the penalty for matching using a gap. The above equation indicates that the
alignment score up to i and j is the maximum of four cases: gap insertion, matching (including
mismatching), gap deletion, and no matching.

3. The Adaptive Local Alignment Algorithm

3.1 Procedural Overview
In this section, we describe a new model that is required to adaptively measure the similarity
between two programs. Our algorithm that detects plagiarism using local alignment operates
in three phases: the program linearization phase, the local alignment phase, and the similarity
measurement phase. Fig. 2 shows the plagiarism detection procedure used by adaptive local
alignment.

Fig. 2. The similarity measurement procedure using the adaptive methods

The dashed boxes in Fig. 2 show the adaptive parts of our proposed method. The first box
indicates the procedure for adaptive local alignment, while the second indicates the procedure
for producing the adaptive threshold. These two steps highlight the basic idea underlying our

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 6, Jun 2012 1633

adaptive method.

3.2 Program Linearization
In the first step of the procedure depicted in Fig. 2 (Program Linearization), the system
generates the token sequences from a given program set. Program linearization is the first step
that extracts the sequence of predefined tokens from each program. The keyword vector
prescribes the set of tokens that should be extracted from the given programs. Therefore, the
keyword vector is defined according to the host programming language. In addition to
keywords, the keyword vector also includes the operator symbols since the aim of the keyword
vector is to reflect the structural characteristics of programs—such as control flow,
subprograms, code blocks, and so on.

The linearization procedure of our system has a novel feature—namely, static
tracing—which cannot be found in other systems. Static tracing is a technique that executes a
program statically at the syntax level to generate the token sequence in that order. In order to
execute a program syntactically, the syntax tree is constructed prior to the tracing. Fig. 3
shows an example of the result of program linearization utilizing static tracing.

Fig. 3. A simple source code and its token sequence generated from the static tracing.

The left half of Fig. 3 shows a simple C program that swaps the contents of two integer
variables using the function swap. The right half of Fig. 3 is the corresponding token
sequence that is generated by the linearization procedure using static tracing. The effect of
static tracing is found around the function call swap. When the linearization
procedure encounters a function call and the function is a user-defined one that has not been
traced yet, the linearization procedure records the function call, FUNC_CALL, and continues
to trace the body of that function. Tracing the called function statically, it returns to the calling
site and continues. When it encounters system-defined functions, tracing is not performed and
UNREACHABLE_FUNC is all that is recorded.

3.3 Adaptive Local Alignment
Adaptive local alignment is a variant of the original local alignment with respect to the
similarity matrix. We compute the similarity of two programs depending on the set of
programs that contains the subject programs. The rationale is that the similarity of two

1634 Lee et al.: Plagiarism Detection among Source Codes using Adaptive Methods

programs should not be determined solely on the basis of the programs themselves, but rather
the characteristics of the program group that they are involved in should be taken into
consideration.

The basic strategy of adaptive local alignment is that the matching score of a keyword
should reflect the frequencies of keywords. More specifically, we attribute matching scores to
keywords in inverse proportion to their frequencies; we attribute high scores to low frequency
keywords and low scores to high frequency keywords. The same rule is also applied as the
penalty for mismatches. Since it is rare to see low frequency keywords being used by two
programs at the same time, two programs that both use keywords of low frequency together
should be considered quite similar. In this respect, our approach is more natural than the
original local alignment.

The adaptive approach is immune to typical plagiarizing attacks such as those involving
the insertion or deletion of meaningless or dummy keywords. Table 2 shows some of the
highest and lowest frequency keywords in the program group ICPC06-3, which consists of
157 programs (See Table 3). As shown in Table 2, assignments (‘=’) and block delimiters
(‘{’and ‘}’) are the most frequently used keywords. Since the adaptive approach weakens the
penalties for mismatching of these keywords, inserting or deleting these keywords has less
effect. In contrast, inserting or deleting low frequency keywords such as ‘struct’ or
‘switch’ has a lot of influence on the overall similarity computed.

Table 2. The keywords with high and low frequencies in a typical program group.
The total number of keywords extracted from this group is 13,104.

The crucial part of the adaptive local alignment is the similarity matrix. Just like the original
local alignment, the similarity matrix M is an (r+1)ⅹ(r+1) matrix if the kinds of keywords
considered is r because the special gap symbol takes part as the (r+1)-th column and row index
of the matrix. Each element M(ki, kj) of the similarity matrix represents the score or the penalty
for matching or mismatching: it represents a matching score if ki = kj and a mismatching
penalty if ki

≠ kj. For gap columns and gap rows, the elements represent penalties for inserting
or deleting gap (inserting gap to the other side) symbols.

In order to determine the adaptive similarity matrix, the frequencies of keywords should be
computed beforehand. Let the entire set of programs that consist of n programs be
P={p1,p2,…, pn} and assume that occur(p, k) denotes the number of occurrences of keyword k
in program p. Then, the total number of occurrences of k in program group P can be defined
as	occur(P, k)= ∑ occur	(p, k)p∈P . Based on this definition, the frequency fi

	Pof a keyword ki in
a program group P is defined as follows:

fi
	P=	 occur(P, ki) 	 occur(P, kj)

r

j=1



High frequency keyword Frequency Low frequency keyword Frequency
Assignment ‘=’ 12.64% ‘struct’ 0.01%
Block Start ‘{’ 10.26% ‘delete’ 0.01%
Block End ‘}’ 10.26% ‘bool’ 0.02%

Equal ‘==’ 6.40% Assignment ‘-=’ 0.02%
‘if’ 6.28% ‘switch’ 0.02%

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 6, Jun 2012 1635

Since the denominator ∑ occur(P, kj)r
j=1 denotes the sum of the number of occurrences of all

the keywords, the frequency fi
	P of a keyword ki lies between 0 and 1 (0 ≤ fi

	P ≤ 1).
Using the keyword frequencies defined above, the adaptive similarity matrix M	P can be

defined as follows:

M	Pki, kj=

⎩⎪⎪⎨
⎪⎪⎧−α∙ log2 (fi

	P∙fj
	P) if ki=kj

β∙ log2 (fi
	P∙fj

	P) if ki≠kj

4β∙ log2 fi
	P

4β∙ log2 fj
	P−∞

if kj is a gap and ki is not
if ki is a gap and kj is not
if both ki and kj are gaps

Here, α and β are tuning parameters, and the sum of these parameters is currently set to 1 (that
is α + β = 1). We can adjust the relative weights for a matching score and a mismatching
penalty using these parameters. Adjusting α to be greater than β makes the matching score
more significant in the final similarity score, while the reverse makes the mismatching penalty
more significant. After tuning these parameters, α is set to 0.65 and β is 0.35.

To define the similarity matrix, we take the log of the keyword frequencies. Log odds are
generally accepted in the information theory discipline. For instance, taking log odds is
generally adopted when comparing the intensity of two signals, especially when the ratio of
the intensity is sufficiently large. As shown in Table 2, the ratio of the frequency of the most
frequent keyword and the least frequent one is in the thousands. Therefore, we adopt log odds
here.

Disregarding the tuning parameters, the matching score is basically set to the log of the
product of the frequencies of the keywords involved. This is the same for mismatching except
that the mismatching penalties are set to be negative. Gap insertions or deletions should also be
treated as penalties. Incidentally, according to the original local alignment, the penalty for
gaps is twice that for mismatches. Reflecting the philosophy of the original local alignment,
we make the penalty for gaps twice as large for mismatches: 2β∙ log2fi

	P∙fi
	P=4β∙ log2 fi

	P.
The last case of two gap symbols should not occur because the aligned region can be

enlarged to an arbitrary length if this is permitted. Hence, we set the score to be

−

∞ to prevent
this anomaly. This strategy is the same as the strategy that was used in the original local
alignment.

3.4 Similarity Measurement
Using the similarity matrix, we can compute the similarity score of an aligned region between
two programs. As a matter of fact, the aligned region is determined when the alignment score
is being computed. However, it is convenient to assume that the conceptual alignment process
takes place before the computation of the similarity score of two programs.

Let us assume that align is a function that produces a pair of aligned blocks from two
programs, A and B. Say the aligned block taken from A is 〈a1, a2, …, am〉 and the
corresponding block from B is 〈b1, b2, …, bm〉, and let align produce the vector of pairs of
corresponding keywords: 	align(A, B)= 〈(a1, b1), (a2, b2), …, (am, bm)〉
Using the function align defined above, the absolute similarity score of two programs can be
defined as follows:

1636 Lee et al.: Plagiarism Detection among Source Codes using Adaptive Methods

SIMabs(A, B)	=  M	P(a, b)
(a, b)∈align(A, B)

The absolute similarity score of two programs is the sum of the individual similarity score of
the corresponding keywords (including gaps) in the aligned region.

In order to compare one similarity with another similarity, a normalized similarity measure
is needed. Since SIMabs largely depends on the lengths of the subject programs, it is not
adequate to compare the similarities themselves. For instance, if two programs A and B are
given, where the length of keyword sequence of A is larger than that of B, the absolute
similarity SIMabs(A, A) will be greater than SIMabs(B, B).

One way to normalize the absolute similarity is to divide the similarity score by the sum of
the self similarities. This definition of normalized similarity seems to be generally accepted
[4][22] and the corresponding similarity function of SIMsum(A, B) can be defined as follows: 	SIMsum(A, B)=

2SIMabs(A, B)
SIMabs(A, A)+ SIMabs(B, B)

Notice that the absolute similarity score of A and B (the numerator) is doubled in order to make
the normalized similarity equal to 1.0 when A is identical to B.

Another way to normalize the similarity score is to divide it by the minimum value of the
self similarities. If a program is made up of only the crucial parts of a program and the length
of the original program is quite long compared to the plagiarized program, the difference in the
length of the two programs may cause the similarity to be less than expected. Since the
plagiarized program consists purely of the copied segment of the original program, the
similarity may seem to be 100%, but SIMsum is not. Conversely, if the plagiarized program has
a lot of dummy statements that are not copied from the original program, then SIMsum can also
be lower than expected. The following new similarity SIMmin can be an alternative way to
overcome these shortcomings in SIMsum: 	SIMmin(A, B)=

SIMabs(A, B)
min{SIMabs(A, A), SIMabs(B, B)}

In this paper, we normalize the similarity score using SIMmin to prevent bias due to the large
difference in program sizes.

3.5 Adaptive cut-off threshold based on LOF
It is generally considered that the higher the similarity score a program pair has, the more the
possibility of plagiarism exists. As a result, many methods for detecting plagiarism regard
program pairs having similarity score more than a predefined threshold as plagiarized pairs.
As mentioned above, because the similarity distribution of program groups is dependent on the
programming environment or the restrictions on the problem, it is important that an adaptive
threshold for plagiarism be defined.

We consider the code pairs that have relatively higher similarity score than others as
outliers. Thus, the problem of detecting plagiarized code pairs can be replaced by the outlier
detection problem. The outlier detection algorithm aims to find a small number of entities in a
data set that appear to deviate markedly from other members of the set. This algorithm has
been proposed for numerous applications, including credit card fraud detection, voting
irregularity analysis, data cleansing, network intrusion, severe weather prediction, geographic
information systems, athletic performance analysis, and other data-mining tasks [23].

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 6, Jun 2012 1637

Outlier detection methods can be divided into classes such as parametric (statistical)
methods, nonparametric methods, and clustering based methods [24]. Statistical parametric
methods either assume a known underlying distribution of the observations, or they are based
on statistical estimates of unknown distribution parameters [25]. Within the class of
non-parametric outlier detection methods, one can set apart the data-mining methods (also
called distance-based methods). These methods are usually based on the local distance
measures and are capable of handling large databases [11][26]. Clustering based methods
consider the cluster of small sizes as clustered outliers. There are many clustering
techniques—such as K-means clustering, K-nearest neighbor clustering, and support vector
machine (SVM)—and they are used in a variety of applications [27][28][29].

From among these algorithms, we use the local outlier factor (LOF) algorithm to define a
criterion for plagiarism [11]. The LOF algorithm is a density-based outlier detection algorithm
that utilizes the concept of a local outlier that captures the degree to which an object is an
outlier based on the density of its local neighborhood. In this method, each entity in the data set
is assigned an LOF value that represents the likelihood of that object being an outlier. High
LOF values are used to identify data objects that are potential outliers, whereas low LOF
values indicate normal data objects [30]. In addition, the LOF algorithm does not need any
assumption on the similarity distribution of the data set.

In our method, the similarity values between program source codes are the data objects. To
get the LOF value of a data object, we first calculate the k

−distance(A), which is defined as the
distance of the object A to the k nearest neighbor. We then calculate reachability

−distance of A
from B, which is the true distance between two objects. The reachability-distance is defined as
follows:

reachability-distancek(A, B)= max{k-distance(B), d(A, B)}

Here, d(A, B) represents the Euclidean distance between A and B. Using this distance measure,
we can calculate the local reachability density of an object A; that is, the quotient of the
average

reachability−distance of the object A from its neighbors.

lrd(A) =
|Nk(A)|∑ reachability-distancek(A, B)B∈Nk(A)

Here, Nk(A) means the sets of k nearest neighbors. Thus, the LOF of object A can be calculated
as follows:

LOFk(A)=
∑ lrd(B)B∈Nk(A)|Nk(A)| lrd(A)

An LOF value close to one indicates that the corresponding object is comparable to its
neighbors (and thus not an outlier). An object whose LOF is less than one is in a denser region
(which would make it an inlier), while the objects whose LOF values are significantly larger
than one indicate outliers.

Fig. 4 shows the similarity distribution of the program group and the relation between the
similarity score and the LOF value of each code pair belonging to that group. The distribution
of the similarity score of a program group seems to follow the Log-Normal distribution in
which most code pairs have similarity score in the 5–40% range, as shown in Fig. 4(a). The
portion of the similarity score where most code pairs are concentrated may vary depending on
the program groups.

1638 Lee et al.: Plagiarism Detection among Source Codes using Adaptive Methods

(a) The PDF graph of similarity scores (b) The LOF distribution

Fig. 4. The similarity distribution of a program group and the relation between the similarity scores and
the LOF values of code pairs.

From Fig. 4(b), it can be seen that the LOF values of similarity from about 5

−40% have
approximately 1.0 and high similarity scores have high LOF values. If we define the similarity
threshold of plagiarism using LOF values, the detection can be resilient to changes in the
similarity distribution. This is the basic idea underlying the adaptive threshold.

4. Implementation
In this section, we describe the implementation details of our proposed adaptive plagiarism
detection system. The system was developed using Visual Studio 2005 with Extreme Toolkit
ver 9.3, and is currently able to detect plagiarism in C, C++, and Java source codes. In addition,
it can be extended to support other languages once the parser for those languages are available.

The system comprises three modules: (1) program linearizer, (2) similarity analyzer, and (3)
viewer modules. The program linearizer was implemented by modifying the parsing module
of OpenC++, a metacompiler for C++ [31]. The similarity analyzer computes the similarity
score for every pair of programs using adaptive local alignment and the LOF algorithm.
Finally, the viewer module for the system was implemented using the user interface library of
Extreme toolkit. Fig. 5 depicts screenshots of the system.

Fig. 5. The similarity table summarizing the similarity scores for the pairs in a program group

1638 Lee et al.: Plagiarism Detection among Source Codes using Adaptive Methods

(a) The PDF graph of similarity scores (b) The LOF distribution

Fig. 4. The similarity distribution of a program group and the relation between the similarity scores and
the LOF values of code pairs.

From Fig. 4(b), it can be seen that the LOF values of similarity from about 5

−40% have
approximately 1.0 and high similarity scores have high LOF values. If we define the similarity
threshold of plagiarism using LOF values, the detection can be resilient to changes in the
similarity distribution. This is the basic idea underlying the adaptive threshold.

4. Implementation
In this section, we describe the implementation details of our proposed adaptive plagiarism
detection system. The system was developed using Visual Studio 2005 with Extreme Toolkit
ver 9.3, and is currently able to detect plagiarism in C, C++, and Java source codes. In addition,
it can be extended to support other languages once the parser for those languages are available.

The system comprises three modules: (1) program linearizer, (2) similarity analyzer, and (3)
viewer modules. The program linearizer was implemented by modifying the parsing module
of OpenC++, a metacompiler for C++ [31]. The similarity analyzer computes the similarity
score for every pair of programs using adaptive local alignment and the LOF algorithm.
Finally, the viewer module for the system was implemented using the user interface library of
Extreme toolkit. Fig. 5 depicts screenshots of the system.

Fig. 5. The similarity table summarizing the similarity scores for the pairs in a program group

1638 Lee et al.: Plagiarism Detection among Source Codes using Adaptive Methods

(a) The PDF graph of similarity scores (b) The LOF distribution

Fig. 4. The similarity distribution of a program group and the relation between the similarity scores and
the LOF values of code pairs.

From Fig. 4(b), it can be seen that the LOF values of similarity from about 5

−40% have
approximately 1.0 and high similarity scores have high LOF values. If we define the similarity
threshold of plagiarism using LOF values, the detection can be resilient to changes in the
similarity distribution. This is the basic idea underlying the adaptive threshold.

4. Implementation
In this section, we describe the implementation details of our proposed adaptive plagiarism
detection system. The system was developed using Visual Studio 2005 with Extreme Toolkit
ver 9.3, and is currently able to detect plagiarism in C, C++, and Java source codes. In addition,
it can be extended to support other languages once the parser for those languages are available.

The system comprises three modules: (1) program linearizer, (2) similarity analyzer, and (3)
viewer modules. The program linearizer was implemented by modifying the parsing module
of OpenC++, a metacompiler for C++ [31]. The similarity analyzer computes the similarity
score for every pair of programs using adaptive local alignment and the LOF algorithm.
Finally, the viewer module for the system was implemented using the user interface library of
Extreme toolkit. Fig. 5 depicts screenshots of the system.

Fig. 5. The similarity table summarizing the similarity scores for the pairs in a program group

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 6, Jun 2012 1639

The set of programs to be analyzed is normally stored in a folder and given as input to the
system. The similarity scores of all program pairs are calculated and stored as a score table.
The screenshots in Fig. 5 show the similarity table analyzed for a given set of programs. The
right pane of the figure shows the set of control parameters, where the actual values can be
modified.

Fig. 6. The source code view that highlights the region of similar blocks respectively from the pair of
source codes.

Fig. 6 depicts the source codes comparison window, which is shown when the user clicks
on a row in the similarity table. The user can inspect the pair of source codes side by side in
this window, where the regions of similarity in the code pairs are highlighted. Although static
tracing is used to compare the programs, the comparison window shows the programs in the
original order rather than the traced order since the original order is more natural to human
inspectors than the traced order.

5. Experiment
We tested our proposed adaptive local alignment for detecting plagiarized source codes with
14 sets of test programs. We also compared the result obtained from local alignment using the
static similarity scoring matrix to that obtained using our proposed adaptive scoring matrix.
(The static scoring matrix (+1 for match,

−1 for mismatch, and

−2 for gap) is applied in most
of the plagiarism detection systems previously mentioned.) We also compared the
performance of our proposed plagiarism detection system to that of JPlag in terms of
sensitivity and specificity analysis. JPlag is a well-known system and is at present one of the
most reliable systems for finding plagiarized source codes [12].

5.1 Experimental Data
In order to evaluate the performance of our proposed system, we collected a set of test
programs from a programming contest—specifically, the ACM International Collegiate
Programming Contest (ICPC). The test programs used were all those submitted in the
East-Asia preliminary and final rounds of the ICPC. All of the submitted programs were

1640 Lee et al.: Plagiarism Detection among Source Codes using Adaptive Methods

written in the C/C++ language. Table 3 summarizes the statistics of the program groups in the
experiment.

Column N indicates the number of submitted programs in each program group. The
number of program pairs was N(N–1)/2, shown in the Pairs column. Most of the submitted
programs were under 100 lines of code (LOC). In the program group ICPC11-4, the maximum
length of the programs was 1,015 lines, but most source codes other than the maximum were
found to be useless, i.e., not a solution to the problem. The last two columns in the table denote
the average (μ) and the standard deviation (σ) of LOC, respectively.

5.2 Comparison of Plagiarism-Suspected Program Codes
To find the plagiarism-suspected source codes, we first calculated the similarity of all the
program pairs in each groups. The result of our first experiment enabled us to find a few
plagiarism-suspected programs in the ICPC05 and ICPC11 groups. In the case of the ICPC11
group, the source codes of three program pairs were exactly the same, and it was eventually
confirmed by the contestants who had cheated.

Table 3. The experimental program sets: ICPC-2005 (ICPC05), ICPC-2006 (ICPC06), and
ICPC-2011(ICPC11)

No. Program Group N Pairs LOC
Max. Min. μ σ

1 ICPC05-1 153 11,628 144 21 44.46 15.85
2 ICPC05-2 109 5,886 139 24 65.44 22.86
3 ICPC06-1 179 15,931 216 19 47.60 20.86
4 ICPC06-2 174 15,051 180 19 43.78 20.46
5 ICPC06-3 157 12,246 234 18 54.29 23.84
8 ICPC06-4 66 2,145 110 25 59.98 35.66
9 ICPC06-5 58 1,653 225 29 66.12 28.91

10 ICPC06-6 60 1,770 227 38 78.43 65.89
11 ICPC11-1 161 12,880 233 34 77.16 30.34
12 ICPC11-3 50 1,225 367 42 92.02 47.67
13 ICPC11-4 263 34,453 1,015 18 56.60 67.37
14 ICPC11-8 42 861 159 35 65.14 25.67
15 ICPC11-9 38 703 161 36 69.45 22.72

We then compared the performance of three different methods: Local Alignment with

Adaptive matrix (LAA), Local Alignment with Static matrix (LAS), and greedy string tiling
(GST)—used in the JPlag system to determine the correctness of locating similar blocks in two
independent programs. Fig. 7 depicts a pair of programs that were suspected to have been
plagiarized in program group ICPC05-1.

From Fig. 7, there is a certainty of substantial plagiarism between the two programs. First,
it can be seen that variables t and n are swapped. Second, when compared with Pa, the block
statements of for and if have been inserted into Pb. Finally, the looping structures in the two
programs are quite similar. However, we note that the conditional expression of the for
statements in lines 18–19 in Pa and in lines 18–20 in Pb have been modified. The two
programs are similar enough to be suspected of being a pair of plagiarized codes.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 6, Jun 2012 1641

(a) Pa which is suspected as a plagiarized
source code

(b) Pb which is suspected as a plagiarized
version of Pa.

Fig. 7. Plagiarism-suspected program pair obtained in the program group ICPC05-1.

Three methods, LAA, LAS, and GST, located the region of similar blocks respectively in
the pairs of source codes in the test sets. In the following, let LineP[a:b] denote the consecutive
lines (statements) between the a-th line and the b-th line inclusive of program P. In our test,
GST suspected that Line	[1:18] was plagiarized from Line	[1:18]. Furthermore, local
alignment using the static scoring matrix reported that Line	[1:19] is suspected to have been
plagiarized from Line	[1:20].

LAS and GST did not effectively detect plagiarized blocks with inserted statements and the
rewritten conditional expression of the for statement. It is worth noting that our LAA
successfully reported that Line	[1:28] is quite similar to Line	[1:37]. In the experiment, the
penalty score of our adaptive local alignment for the for loop (in Line	[18:19] and in
Line	[18:20]) was determined to be a value that was less than the penalty score (

−1), which
is the static penalty value of a static local alignment. Though this case is typical, it implies that
our algorithm is resilient to typical methods of attack such as variable name changing, operator
changing, inserting/deleting short dummy statements, and rewriting logical expressions.

5.3 Comparison with JPlag
We also compared the general effectiveness of our detection technique to JPlag. Both our
system and that of JPlag construct a sequence of tokens for the intermediate representation of
source code, but a comparison of the algorithms revealed that the two systems are different.
JPlag uses the greedy-string-tiling (GST) algorithm while our system uses the adaptive local
alignment (LAA) algorithm. The main difference between the two methods is that local
alignment is more suitable for locating the specific region of plagiarism, while GST is suitable
for measuring the overall similarity of the two programs. Since plagiarism among codes
happens in a few critical classes or functions, local alignment is more effective and efficient in
detecting clever plagiarisms.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 6, Jun 2012 1641

(a) Pa which is suspected as a plagiarized
source code

(b) Pb which is suspected as a plagiarized
version of Pa.

Fig. 7. Plagiarism-suspected program pair obtained in the program group ICPC05-1.

Three methods, LAA, LAS, and GST, located the region of similar blocks respectively in
the pairs of source codes in the test sets. In the following, let LineP[a:b] denote the consecutive
lines (statements) between the a-th line and the b-th line inclusive of program P. In our test,
GST suspected that Line	[1:18] was plagiarized from Line	[1:18]. Furthermore, local
alignment using the static scoring matrix reported that Line	[1:19] is suspected to have been
plagiarized from Line	[1:20].

LAS and GST did not effectively detect plagiarized blocks with inserted statements and the
rewritten conditional expression of the for statement. It is worth noting that our LAA
successfully reported that Line	[1:28] is quite similar to Line	[1:37]. In the experiment, the
penalty score of our adaptive local alignment for the for loop (in Line	[18:19] and in
Line	[18:20]) was determined to be a value that was less than the penalty score (

−1), which
is the static penalty value of a static local alignment. Though this case is typical, it implies that
our algorithm is resilient to typical methods of attack such as variable name changing, operator
changing, inserting/deleting short dummy statements, and rewriting logical expressions.

5.3 Comparison with JPlag
We also compared the general effectiveness of our detection technique to JPlag. Both our
system and that of JPlag construct a sequence of tokens for the intermediate representation of
source code, but a comparison of the algorithms revealed that the two systems are different.
JPlag uses the greedy-string-tiling (GST) algorithm while our system uses the adaptive local
alignment (LAA) algorithm. The main difference between the two methods is that local
alignment is more suitable for locating the specific region of plagiarism, while GST is suitable
for measuring the overall similarity of the two programs. Since plagiarism among codes
happens in a few critical classes or functions, local alignment is more effective and efficient in
detecting clever plagiarisms.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 6, Jun 2012 1641

(a) Pa which is suspected as a plagiarized
source code

(b) Pb which is suspected as a plagiarized
version of Pa.

Fig. 7. Plagiarism-suspected program pair obtained in the program group ICPC05-1.

Three methods, LAA, LAS, and GST, located the region of similar blocks respectively in
the pairs of source codes in the test sets. In the following, let LineP[a:b] denote the consecutive
lines (statements) between the a-th line and the b-th line inclusive of program P. In our test,
GST suspected that Line	[1:18] was plagiarized from Line	[1:18]. Furthermore, local
alignment using the static scoring matrix reported that Line	[1:19] is suspected to have been
plagiarized from Line	[1:20].

LAS and GST did not effectively detect plagiarized blocks with inserted statements and the
rewritten conditional expression of the for statement. It is worth noting that our LAA
successfully reported that Line	[1:28] is quite similar to Line	[1:37]. In the experiment, the
penalty score of our adaptive local alignment for the for loop (in Line	[18:19] and in
Line	[18:20]) was determined to be a value that was less than the penalty score (

−1), which
is the static penalty value of a static local alignment. Though this case is typical, it implies that
our algorithm is resilient to typical methods of attack such as variable name changing, operator
changing, inserting/deleting short dummy statements, and rewriting logical expressions.

5.3 Comparison with JPlag
We also compared the general effectiveness of our detection technique to JPlag. Both our
system and that of JPlag construct a sequence of tokens for the intermediate representation of
source code, but a comparison of the algorithms revealed that the two systems are different.
JPlag uses the greedy-string-tiling (GST) algorithm while our system uses the adaptive local
alignment (LAA) algorithm. The main difference between the two methods is that local
alignment is more suitable for locating the specific region of plagiarism, while GST is suitable
for measuring the overall similarity of the two programs. Since plagiarism among codes
happens in a few critical classes or functions, local alignment is more effective and efficient in
detecting clever plagiarisms.

1642 Lee et al.: Plagiarism Detection among Source Codes using Adaptive Methods

In order to compare the performance of different plagiarism detection systems, it is
important that quantitative measures for the effectiveness of the systems be developed. To
measure the effectiveness and accuracy of plagiarism detection systems, we computed two
measures: sensitivity and specificity. These measures are commonly used in most
experiment-based studies, such as information retrieval. In order to evaluate sensitivity and
specificity, we counted the number of cases of true positives (TP), false positives (FP), true
negatives (TN), and false negatives (FN). Table 4 summarizes the possible testing outputs.

Table 4. Four different testing results of plagiarism detection TP (true positive), FP (false positive), FN
(false negative), and TN (true negative)

 Actual condition
plagiarized Non-plagiarized

Detection
result

Plagiarized TP FP
Non-plagiarized FN TN

TP signifies that a plagiarism pair (i.e., one program was plagiarized from the other) was
detected as a plagiarism pair in our system. Based on these four cases, the sensitivity and
specificity are defined as follows:

 sensitivity(θ) =
|TP||TP|+|FN| ,						specificity(θ)=

|TN||TN|+|FP|	
Here, θ is a user-defined cut-off threshold similarity for plagiarism. If a detection system S
shows high sensitivity, then it means S is not likely to miss a real plagiarized code pair. If a
detection system S shows high specificity, then it means S is not likely to suspect any innocent
code as a cheated one. The most desirable case is that both sensitivity and specificity of the
system are high, but generally speaking, the specificity usually contradicts the sensitivity.
In order to compute sensitivity and specificity, we prepared some artificially plagiarized codes,
(since it was hard to collect more than 10 “real” plagiarized codes in practice). We asked 10
students to plagiarize the given source codes that were selected from programs submitted in
the ICPC06, resulting in 10 different plagiarized programs from an ICPC06 source code. This
experiment limited the working time for plagiarizing the source codes to at most 2 h, as was
usually done by dishonest students. Table 5 shows the artificially generated test set of 40
plagiarized source codes.

In the experiment we compared our system to JPlag in terms of sensitivity and specificity
according to the cut-off threshold θ. If Sim(A, B) is greater than a threshold , then we report
that A is certainly plagiarized from B.

Table 5. Overview of experiment programs including artificially plagiarized programs.

Program
Group

submitted
files

plagiarized
files pairs

LOC
Max. Min. μ. σ

ICPC06-3 157 10 13,861 234 18 54.29 27.10
ICPC06-4 66 10 2,850 110 25 57.89 20.56
ICPC06-5 58 10 2,278 214 29 69.12 28.94
ICPC06-6 60 10 2,415 227 38 76.21 27.70

Fig. 8 shows the sensitivity and specificity for groups ICPC06-3, ICPC06-4, ICPC06-5,

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 6, Jun 2012 1643

and ICPC06-6. In each graph, the solid line and the dashed line indicate the result for our
proposed adaptive system and that of JPlag, respectively. The lines that have a mark indicate
the sensitivity graphs, while those without any mark indicates specificity graphs. The
sensitivity graph in Fig. 8 shows that our system was more sensitive than JPlag, especially for
the range where the cut-off threshold θ was above 70%. Since the plagiarized code pairs hardly
exist in the low similarity score range, the sensitivity in this portion was not very important in
the detection of code plagiarism. Therefore our system is considered more practical than JPlag
with respect to plagiarism detection.

Was this gain in sensitivity obtained by sacrificing specificity? The specificity graph in Fig.
8 shows that this was not the case. For a normal cut-off threshold θ of more than 70%, the
specificity of JPlag was no better than our specificity. In fact, our system was slightly more
specific than JPlag when the cutoff threshold θ was above 30% for three test sets (Fig. 8(b), (c),
and (d)). We should point out that the specificity curves of our system are smoother than those
of JPlag, which means that the specificity of our system is more stable than JPlag when the
cutoff threshold is varying.

Since the specificity curve monotonically increases and the sensitivity curve
monotonically decreases, a simple way to compare the performance of detection systems is to
compare the y-axis value (throughput) of the intersection point of the specificity and
sensitivity curves. The x-axis location of the intersection point of the specificity and sensitivity
curves can be considered the tradeoff threshold balancing the minimization of false positives
and false negatives. From the result, we can know that our adaptive method is more efficient
and reliable than JPlag in terms of sensitivity and specificity. Table 6 shows the exact x and y
axis value of the tradeoff threshold points of Fig. 8.

In all program groups but ICPC06-3, it can be seen that our system is more effective than
JPlag in the sense that both the sensitivity and the specificity (throughput column in Table 6)
of our system is higher than those of JPlag by 3.1% on average. The programming problem for
ICPC06-3 has a relatively low level of difficulty compared with other problems. As mentioned
above, the adaptive local alignment used in our system is more suitable for locating the
specific region of plagiarism, while the algorithm used by JPlag (i.e., GST) is more suitable for
measuring the overall similarity of the two programs. This implies that JPlag can be effective
enough for simple programs such as those in program group ICPC06-3.

(a) ICPC06-3 (b) ICPC06-4

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 6, Jun 2012 1643

and ICPC06-6. In each graph, the solid line and the dashed line indicate the result for our
proposed adaptive system and that of JPlag, respectively. The lines that have a mark indicate
the sensitivity graphs, while those without any mark indicates specificity graphs. The
sensitivity graph in Fig. 8 shows that our system was more sensitive than JPlag, especially for
the range where the cut-off threshold θ was above 70%. Since the plagiarized code pairs hardly
exist in the low similarity score range, the sensitivity in this portion was not very important in
the detection of code plagiarism. Therefore our system is considered more practical than JPlag
with respect to plagiarism detection.

Was this gain in sensitivity obtained by sacrificing specificity? The specificity graph in Fig.
8 shows that this was not the case. For a normal cut-off threshold θ of more than 70%, the
specificity of JPlag was no better than our specificity. In fact, our system was slightly more
specific than JPlag when the cutoff threshold θ was above 30% for three test sets (Fig. 8(b), (c),
and (d)). We should point out that the specificity curves of our system are smoother than those
of JPlag, which means that the specificity of our system is more stable than JPlag when the
cutoff threshold is varying.

Since the specificity curve monotonically increases and the sensitivity curve
monotonically decreases, a simple way to compare the performance of detection systems is to
compare the y-axis value (throughput) of the intersection point of the specificity and
sensitivity curves. The x-axis location of the intersection point of the specificity and sensitivity
curves can be considered the tradeoff threshold balancing the minimization of false positives
and false negatives. From the result, we can know that our adaptive method is more efficient
and reliable than JPlag in terms of sensitivity and specificity. Table 6 shows the exact x and y
axis value of the tradeoff threshold points of Fig. 8.

In all program groups but ICPC06-3, it can be seen that our system is more effective than
JPlag in the sense that both the sensitivity and the specificity (throughput column in Table 6)
of our system is higher than those of JPlag by 3.1% on average. The programming problem for
ICPC06-3 has a relatively low level of difficulty compared with other problems. As mentioned
above, the adaptive local alignment used in our system is more suitable for locating the
specific region of plagiarism, while the algorithm used by JPlag (i.e., GST) is more suitable for
measuring the overall similarity of the two programs. This implies that JPlag can be effective
enough for simple programs such as those in program group ICPC06-3.

(a) ICPC06-3 (b) ICPC06-4

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 6, Jun 2012 1643

and ICPC06-6. In each graph, the solid line and the dashed line indicate the result for our
proposed adaptive system and that of JPlag, respectively. The lines that have a mark indicate
the sensitivity graphs, while those without any mark indicates specificity graphs. The
sensitivity graph in Fig. 8 shows that our system was more sensitive than JPlag, especially for
the range where the cut-off threshold θ was above 70%. Since the plagiarized code pairs hardly
exist in the low similarity score range, the sensitivity in this portion was not very important in
the detection of code plagiarism. Therefore our system is considered more practical than JPlag
with respect to plagiarism detection.

Was this gain in sensitivity obtained by sacrificing specificity? The specificity graph in Fig.
8 shows that this was not the case. For a normal cut-off threshold θ of more than 70%, the
specificity of JPlag was no better than our specificity. In fact, our system was slightly more
specific than JPlag when the cutoff threshold θ was above 30% for three test sets (Fig. 8(b), (c),
and (d)). We should point out that the specificity curves of our system are smoother than those
of JPlag, which means that the specificity of our system is more stable than JPlag when the
cutoff threshold is varying.

Since the specificity curve monotonically increases and the sensitivity curve
monotonically decreases, a simple way to compare the performance of detection systems is to
compare the y-axis value (throughput) of the intersection point of the specificity and
sensitivity curves. The x-axis location of the intersection point of the specificity and sensitivity
curves can be considered the tradeoff threshold balancing the minimization of false positives
and false negatives. From the result, we can know that our adaptive method is more efficient
and reliable than JPlag in terms of sensitivity and specificity. Table 6 shows the exact x and y
axis value of the tradeoff threshold points of Fig. 8.

In all program groups but ICPC06-3, it can be seen that our system is more effective than
JPlag in the sense that both the sensitivity and the specificity (throughput column in Table 6)
of our system is higher than those of JPlag by 3.1% on average. The programming problem for
ICPC06-3 has a relatively low level of difficulty compared with other problems. As mentioned
above, the adaptive local alignment used in our system is more suitable for locating the
specific region of plagiarism, while the algorithm used by JPlag (i.e., GST) is more suitable for
measuring the overall similarity of the two programs. This implies that JPlag can be effective
enough for simple programs such as those in program group ICPC06-3.

(a) ICPC06-3 (b) ICPC06-4

1644 Lee et al.: Plagiarism Detection among Source Codes using Adaptive Methods

(c) ICPC06-5 (d) ICPC06-6

Fig. 8. The cut-off thresholds determined by the sensitivity and the specificity. Our adaptive system is
superior to JPlag in that both the sensitivity and the specificity where the cut-off threshold θ is above

70%.

Table 6. Comparison of the tradeoff threshold points of our system and JPlag

Our system JPlag

tradeoff threshold throughput tradeoff threshold throughput
ICPC06-3 18.4 91.6% 12.5 97.5%
ICPC06-4 43.3 96.6% 38.2 91.8%
ICPC06-5 30.9 99.1% 27.7 90.0%
ICPC06-6 25.8 94.2% 23.1 90.0%
average 29.6 95.4% 25.4 92.3%

5.4 Adaptively Deciding On The Cut-Off Threshold Based On LOF
From the above experiments, we found that the detection capabilities of the system varies
depending on the cut-off threshold of the similarity score. We compared the detection
performance for two cases: (1) using a fixed threshold and (2) using an adaptive threshold
taking the LOF value into consideration. For the fixed threshold, we set the cut-off threshold at
70%, i.e., if the similarity score of a program pair was more than 70%, the pair would be
detected as a plagiarism pair in our system. Further, for the adaptive threshold, we set the
adaptive cut-off threshold based on the LOF value of the program pairs. The LOF value of a
program pair depends on the distribution of similarity scores of its program group.

Table 7. Plagiarism detection performance of the cases using a fixed and an adaptive similarity
threshold base on LOF value.

 adaptive
thresholdLOF=3

Sensitivity Specificity
fixed adaptive gain fixed adaptive gain

ICPC06-3 57.31% 50.0% 70.0% 20.0% 100.0% 99.8% -0.2%
ICPC06-4 72.36% 60.0% 60.0% 0.0% 99.8% 99.8% 0.0%
ICPC06-5 36.93% 70.0% 90.0% 20.0% 99.9% 99.6% -0.3%
ICPC06-6 47.29% 50.0% 70.0% 20.0% 100.0% 99.7% -0.3%

Average 57.5% 72.5% 15.0% 99.9% 99.7% -0.2%

1644 Lee et al.: Plagiarism Detection among Source Codes using Adaptive Methods

(c) ICPC06-5 (d) ICPC06-6

Fig. 8. The cut-off thresholds determined by the sensitivity and the specificity. Our adaptive system is
superior to JPlag in that both the sensitivity and the specificity where the cut-off threshold θ is above

70%.

Table 6. Comparison of the tradeoff threshold points of our system and JPlag

Our system JPlag

tradeoff threshold throughput tradeoff threshold throughput
ICPC06-3 18.4 91.6% 12.5 97.5%
ICPC06-4 43.3 96.6% 38.2 91.8%
ICPC06-5 30.9 99.1% 27.7 90.0%
ICPC06-6 25.8 94.2% 23.1 90.0%
average 29.6 95.4% 25.4 92.3%

5.4 Adaptively Deciding On The Cut-Off Threshold Based On LOF
From the above experiments, we found that the detection capabilities of the system varies
depending on the cut-off threshold of the similarity score. We compared the detection
performance for two cases: (1) using a fixed threshold and (2) using an adaptive threshold
taking the LOF value into consideration. For the fixed threshold, we set the cut-off threshold at
70%, i.e., if the similarity score of a program pair was more than 70%, the pair would be
detected as a plagiarism pair in our system. Further, for the adaptive threshold, we set the
adaptive cut-off threshold based on the LOF value of the program pairs. The LOF value of a
program pair depends on the distribution of similarity scores of its program group.

Table 7. Plagiarism detection performance of the cases using a fixed and an adaptive similarity
threshold base on LOF value.

 adaptive
thresholdLOF=3

Sensitivity Specificity
fixed adaptive gain fixed adaptive gain

ICPC06-3 57.31% 50.0% 70.0% 20.0% 100.0% 99.8% -0.2%
ICPC06-4 72.36% 60.0% 60.0% 0.0% 99.8% 99.8% 0.0%
ICPC06-5 36.93% 70.0% 90.0% 20.0% 99.9% 99.6% -0.3%
ICPC06-6 47.29% 50.0% 70.0% 20.0% 100.0% 99.7% -0.3%

Average 57.5% 72.5% 15.0% 99.9% 99.7% -0.2%

1644 Lee et al.: Plagiarism Detection among Source Codes using Adaptive Methods

(c) ICPC06-5 (d) ICPC06-6

Fig. 8. The cut-off thresholds determined by the sensitivity and the specificity. Our adaptive system is
superior to JPlag in that both the sensitivity and the specificity where the cut-off threshold θ is above

70%.

Table 6. Comparison of the tradeoff threshold points of our system and JPlag

Our system JPlag

tradeoff threshold throughput tradeoff threshold throughput
ICPC06-3 18.4 91.6% 12.5 97.5%
ICPC06-4 43.3 96.6% 38.2 91.8%
ICPC06-5 30.9 99.1% 27.7 90.0%
ICPC06-6 25.8 94.2% 23.1 90.0%
average 29.6 95.4% 25.4 92.3%

5.4 Adaptively Deciding On The Cut-Off Threshold Based On LOF
From the above experiments, we found that the detection capabilities of the system varies
depending on the cut-off threshold of the similarity score. We compared the detection
performance for two cases: (1) using a fixed threshold and (2) using an adaptive threshold
taking the LOF value into consideration. For the fixed threshold, we set the cut-off threshold at
70%, i.e., if the similarity score of a program pair was more than 70%, the pair would be
detected as a plagiarism pair in our system. Further, for the adaptive threshold, we set the
adaptive cut-off threshold based on the LOF value of the program pairs. The LOF value of a
program pair depends on the distribution of similarity scores of its program group.

Table 7. Plagiarism detection performance of the cases using a fixed and an adaptive similarity
threshold base on LOF value.

 adaptive
thresholdLOF=3

Sensitivity Specificity
fixed adaptive gain fixed adaptive gain

ICPC06-3 57.31% 50.0% 70.0% 20.0% 100.0% 99.8% -0.2%
ICPC06-4 72.36% 60.0% 60.0% 0.0% 99.8% 99.8% 0.0%
ICPC06-5 36.93% 70.0% 90.0% 20.0% 99.9% 99.6% -0.3%
ICPC06-6 47.29% 50.0% 70.0% 20.0% 100.0% 99.7% -0.3%

Average 57.5% 72.5% 15.0% 99.9% 99.7% -0.2%

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 6, Jun 2012 1645

It means that although two program pairs that belong to different program groups have the
same similarity score, their LOF values can be different.
For the test, if the LOF value of a program pair was more than three, the pair was considered a
plagiarism pair. Under these conditions, we tested for the detection of plagiarism pairs with
our data set ICPC06-3, ICPC06-4, ICPC06-5, and ICPC06-6. The detection results are
summarized in Table 7.
For all test groups, the detection performance using an adaptive threshold was superior in
sensitivity compared with that of using a fixed threshold with only negligible loss of the

specificity (−0.2%). The second column (adaptive thresholdLOF=3) of Table 7 indicates the
similarity score when the LOF value of a code pair was set to 3. This value varies with each
program group because program groups have different similarity distributions. Surprisingly,
there is wide variance in this adaptive threshold depending on the program group. This means
that we can choose a suitable threshold adaptively depending on the program group using the
LOF value.

6. Conclusion and Future Work
In this paper, we proposed a new method of automatically detecting plagiarized programs in a
given large program set. The contributions of our method are as follows. First, we proposed an
adaptive local alignment that changes the similarity matrix depending on the frequencies of
the keywords of the input program set. The basic idea underlying the adaptive local alignment
is to attribute more weight to the important keywords of the program source code.

Second, we developed a method to adaptively determine the cut-off threshold based on the
LOF of the similarity distribution. As the similarity distribution of a program set is dependent
on the set of programs, it is important that the proper similarity threshold be adaptively
determined according to the program set. The adaptive threshold can help a human inspector
to cope with pseudo-plagiarism, in which most programs are similar but none is the result of a
real plagiarism. Pseudo-plagiarism may occur when the problem is too simple or has a strong
functional requirement. The adaptive thresholds for these cases will be set to a low value,
producing lots of false positives. The human reader can eventually determine these cases as
pseudo-plagiarism.

Third, we conducted experiments to evaluate the performance of our system. We prepared
a set of testing programs from an actual programming contest, the ACM International
Collegiate Programming Contest (ICPC). Experimental results indicate that our proposed
adaptive local alignment is especially effective in detecting plagiarism in source codes; in
particular, it is superior to JPlag in the portion where the similarity score is greater than 70%.
Further, the adaptive threshold outperforms the fixed threshold. Specifically, it lifts the
sensitivity up to more than 72.5% on average with negligible loss of specificity (0.2% on
average).

We plan to extend our algorithm to further application of code analyses in the future.
Currently, we are trying to reconstruct the phylogeny tree for a program set, which is based on
the idea that a program can be considered as a form of artificial life. The code phylogeny tree
will hopefully show the “evolution” of the source, which will help to identify the plagiarism
groups more precisely. Also, the statistical method for determining the pseudo plagiarism may
be effectively combined with our system; this will also be done in future work [32].

1646 Lee et al.: Plagiarism Detection among Source Codes using Adaptive Methods

References
[1] J. Carter, “Collaboration or plagiarism: What happens when students work together,” in Proc. of

ITICSE’99, pp.52-55, Jun.1999. Article (CrossRef Link)
[2] A. Knight, K. Almeroth, and B. Bimber, “An automated system for plagiarism detection using the

internet,” in Proc. of ED-MEDIA 2004, pp.3619-3625, Jun.2004. Article (CrossRef Link)
[3] D. Gitchell and N. Tran, “Sim: a utility for detecting similarity in computer programs,” in Proc. of

SIGCSE’99, pp.266-270, Mar.1999. Article (CrossRef Link)
[4] L. Prechelt, G. Malpohl, and M. Philippsen, “Finding plagiarisms among a set of programs with

JPlag,” Journal of Universal Computer Science, vol.8, no.11, pp.1016-1038, Nov.2002. Article
(CrossRef Link)

[5] G. Whale, “Identification of program similarity in large populations,” The Computer
Journal-Special issue on Procedural programming, vol.33, no.2, pp.140-146, Apr.1990. Article
(CrossRef Link)

[6] M. J. Wise, “Detection of similarities in student programs: Yap’ing may be preferable to
plague’ing,” ACM SIGSCE Bulletin, vol.24, no.1, pp.268-271, Mar.1992. Article (CrossRef Link)

[7] S. Schleimer, D.S. Wilkerson, and A. Aiken, “Winnowing: local algorithms for document
fingerprinting,” in Proc. of the ACM SIGMOD 2003, pp.76-85, Jun.2003. Article (CrossRef Link)

[8] JS. Lim, JH. Ji, HG. Cho, and G. Woo, “Plagiarism detection among source codes using adaptive
local alignment of keywords,” in Proc. of ICUIMC’11, pp.24-33, 2 Feb.2011. Article (CrossRef
Link)

[9] T. F. Smith and M. S. Waterman, “Identification of common molecular subsequences,” Journal of
Molecular Biology, vol.147, pp.195-197, 1981. Article (CrossRef Link)

[10] JH. Ji, SH. Park, G. Woo, and HG. Cho, “Source code similarity detection using adaptive local
alignment of keywords,” in Proc. of PDCAT 2007, pp.179-180, Dec.2007. Article (CrossRef Link)

[11] M. M. Breunig, H. P. Kriegel, R. T. Ng and J. Sander, “LOF: Identifying Density-Based Local
Outliers,” in Proc. of the ACM SIGMOD 2000, pp.93-104, May.2000. Article (CrossRef Link)

[12] A. Parker and J. O. Hamblen, “Computer algorithms for plagiarism detection,” IEEE Trans. on
Education, vol.32, no.2, pp.94-99, May.1989. Article (CrossRef Link)

[13] S. Brin, J. Davis, and H. Garcia-Molina, “Copy detection mechanisms for digital documents,” in
Proc. of the ACM SIGMOD 1995, pp.398-409, May.1995. Article (CrossRef Link)

[14] J. H. Johnson, “Identifying redundancy in source coding using fingerprints,” in CASCON’93,
pp.171-183, 1993. Article (CrossRef Link)

[15] S. D. Stephens, “Using metrics to detect plagiarism (student paper),” The journal of computing
Sciences in Colleges, vol.16, no.3, pp.191-196, Mar.2001. Article (CrossRef Link)

[16] M. H. Halstead, Elements of Software Science (Operating and programming systems series),
Elsevier Science Inc., New York, 1977. Article (CrossRef Link)

[17] T. Schmidt and J. Stoye, “Quadratic time algorithms for finding common intervals in two and more
sequences,” in Proc. of CPM 2004, pp. 347-385, Jul.2004. Article (CrossRef Link)

[18] JW. Son, SB. Park, and SY. Park, “Program plagiarism detection using parse tree kernels,” in Proc.
of PRICAI 2006, pp.1000-1004, Aug.2006. Article (CrossRef Link)

[19] I. D. Baxter, A. Yahin, L. M. Moura, M. Sant’Anna, and L. Bier, “Clone detection using abstract
syntax trees,” in Proc. of ICSM’98, pp.368-377, Mar.1998. Article (CrossRef Link)

[20] K. L. Verco and M. J. Wise, “Software for detecting suspected plagiarism: Comparing structure
and attribute-counting systems,” in Proc. of ACSE’96, pp.81-88, Jul.1996. Article (CrossRef Link)

[21] M. J. Wise, “Neweyes: A system for comparing biological sequences using the running
Karp-Rabin Greedy String-Tiling algorithm,” in Proc. of ISMB 1995, pp.393-401, Aug.1995.
Article (CrossRef Link)

[22] X. Chen, B. Francia, M. Li, B. McKinnon, and A. Seker, “Shared information and program
plagiarism detection,” IEEE Trans. On Information Theory, vol.50, no.7, pp.1545-1551, 2004.
Article (CrossRef Link)

[23] J. Zhang and M. Zulkernine, “Anomaly based network intrusion detection with unsupervised
outlier detection,” in Proc. of ICC’06, vol.5, pp.2388-2393, Jun.2006. Article (CrossRef Link)

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 6, Jun 2012 1647

[24] O. Maimon and L. Rokach, “Data mining and knowledge discovery handbook”, Springer-Verlag
New York Inc, 2005. Article (CrossRef Link)

[25] J. Laurikkala, M. Juhola, and E. Kentala, “Informal identification of outliers in medical data,” in
Proc. of IDAMAP 2000, Aug.2000. Article (CrossRef Link)

[26] E. M. Knorr and R. T. Ng, “Algorithms for mining distance-based outliers in large datasets,” in
Proc. of VLDB’98, pp.392-403, Aug.1998. Article (CrossRef Link)

[27] Y. Zeng and T. M. Chen, “Classification of traffic flows into QoS class by unsupervised learning
and KNN clustering,” KSII Trans. on Internet and Information Systems, vol.3, no.2, pp.134-146,
2009. Article (CrossRef Link)

[28] SH. Song, CH. Lee, JH. Park, KJ. Koo, JK. Kim, and JS. Park, “enhancing location estimation and
reducing computation using adaptive zone based K-NNSS algorithm,” KSII Trans. on Internet and
Information Systems, vol.3, no.1, pp.119-133, 2009. Article (CrossRef Link)

[29] JH. Yu, HS. Lee, YH. Im, MS. Kim, and DH. Park, “Real-time classification of internet
application traffic using a hierarchical multi-class SVM,” KSII Trans. on Internet and Information
Systems, vol.4, no.5, pp.859-876, 2010. Article (CrossRef Link)

[30] M. Alshawabkeh, B. Jang, and D. Kaeli, “Accelerating the local outlier factor algorithm on a GPU
for intrusion detection systems,” in Proc. of GPGPU-3, pp.104-110, Mar.2010. Article(CrossRef
Link)

[31] OpenC++ Homepage, http://opencxx.sourceforge.net/, lastly visited on Apr. 2012.
[32] JH. Ji, G. Woo, SH. Park, and HG. Cho, “An intelligent system for detecting source code

plagiarism using a probabilistic graph model,” in Proc. of MLDM 2007, pp.55-69, Jul.2007.
Article(CrossRef Link)

Yun-Jung Lee received a B.S. degree from Pukyung National University, Republic of
Korea, in 1995, a M.S. degree from Pukyung National University, Republic of Korea in
1999, and a Ph.D. degree from Pukyung National University, Republic of Korea, in 2008.
She is currently with the Center for U-Port IT Research and Education in Pusan National
University, Republic of Korea. Her research interests include weblog visualization, social
network, program coding style visualization, and facial animation.

Jin-Su Lim received BS and MS degrees in computer science and engineering from the
Pusan National University, Republic of Korea, in 2010 and in 2012, respectively. He is
currently with the HA Control R&D lab in LG Electronics, Republic of Korea. His
research interests are software plagiarism detection and software reuse.

Jeong-Hoon Ji received his B.S. degree in 2003 from Kyungsung University, Republic of
Korea, a M.S. degree in 2005 from Kyungsung University, Republic of Korea, and a Ph.D.
degree from Pusan National University, Republic of Korea in 2010. He is currently with the
Korea Intellectual Property Office, Republic of Korea. His research interests are
programming language and software plagiarism detection.

1648 Lee et al.: Plagiarism Detection among Source Codes using Adaptive Methods

Hwan-Gue Cho received a B.S. degree from Seoul National University, Korea, and M.S.
and Ph.D. degrees from Korea Advanced Institute of Science and Technology, Korea.
Since 1990 he has been a Professor in Pusan National University, Korea. His research
interests are graphics (visualization) and bioinformatics (sequence alignment and
bionetwork analysis).

Gyun Woo is an associate professor at the School of Computer Science and Engineering,
Pusan National University in Busan, Republic of Korea. He received B.S., M.S., and Ph.D.
degrees in computer science from the Korea Advanced Institute of Science and
Technology, in 1991, 1993, and 2000, respectively. He previously worked at Dong-A
University as an assistant professor, then joined Pusan National University in September
2004. He is the co-author of Playing with C and Playing with Java (Kyobo Book
Company). His areas of interest include implementation of programming languages,
program analyses, functional languages, functional programming, software testing, swarm
intelligence, robot control, and visualization of software.

