과제정보
연구 과제 주관 기관 : National Research Foundation of Korea
참고문헌
- ACI546.3R-06. (2006). Guide to the selection of materials for the repair of concrete.
- ACI546R-04. (2004). Concrete Repair Guide, 2004.
- ACI548.1R. (2004). Guide for the use of polymers in concrete.
- ACI201.2R. (2004). Guide to Durable Concrete.
- Al-Zahrani, M., et al. (2003). Mechanical properties and durability characteristics of polymer-and cement-based repair materials. Cement and Concrete Composites, 25(4) 527- 537.
- Ashby, M. (2000). Multi-objective optimization in material design and selection. Acta Materialia, 48(1), 359-370. https://doi.org/10.1016/S1359-6454(99)00304-3
- Ashby, M. F. (2005). Materials selection in mechanical design, Oxford: Butterworth-Heinemann.
- Ashby, M. F., & Johnson, K. (2002). Materials and design: The art and science of material selection. In Product design (2nd Ed.). Oxford: Butterworth-Heinemann.
- Bamkin, R., & Piearcey, B. (1990). Knowledge-based material selection in design. Materials and Design, 11(1), 25-29. https://doi.org/10.1016/0261-3069(90)90086-Y
- Beushausen, H. D., & Alexander, M. (2007). Performance of concrete patch repair systems. Advances in Construction Materials 2007, 255-262.
- Chawalwala, A. F. (1999). Material characteristics of polymer concrete. Technical Report, University of Delaware Center of Composite Materials.
- Chen, R.W., et al. (1994). A systematic methodology of material selection with environmental considerations. Electronics and the Environment, IEEE International Symposium, Pittxburgh, PA, May 1994, pp. 252-257.
- Cusson, D., & Mailvaganam, N. (1996). Durability of repair materials, Concrete International-Design and Construction, 18(3), 34-38.
- Danish Standards Association (2004). Repair of concrete structures to EN 1504. Oxford: Butterworth-Heinemann.
- Do, J. (2009). Performance configuration and optimal selection of patching repair materials for concrete structure using AHP, 1st Asia Pacific Young Researchers and Graduates Symposium, Kunsan, pp. 43-51.
- Edward, C. (2007). Concrete design, service life and repair strategy: A new European standard.
- Emmons, P. P. H. (1995). Performance criteria for concrete repair materials. Phase 1, DTIC Document.
- Emmons, P. P. et al. (2000). Selecting durable repair materials, performance criteria. Concrete International, 22(3), 38-46.
- EN1504-series. (2002). Products and systems for protection and repair of concrete structure. Definitions, requirements, quality concrol and evaluation of conformity.
- Fitch, P. P. E., & Cooper, J. S. (2004). Life cycle energy analysis as a method for material selection. Journal of Mechanical Design, 126(4), 798-804. https://doi.org/10.1115/1.1767821
- Holloway, L. (1998). Materials selection for optimal environmental impact in mechanical design. Materials and Design, 19(4), 133-143. https://doi.org/10.1016/S0261-3069(98)00031-4
- ICRINo. 320.2R. (2009). Guide for selecting and specifying materials for repair of concrete surfaces.
- ICRINo.320.1R. (1996). Guide for selecting application methods for the repair of concrete surfaces.
- ICRINo.330.1. (2006). Guide for the selection of strengthening systems for concrete structures.
- Ishii, K. (1996). Material selection issues in design for recyclability. The Second International EcoBalnce Conference, Tsukuba, Japan.
- Jalham, I. S. (2006). Decision-making integrated information technology (IIT) approach for material selection. International Journal of Computer Applications in Technology, 25(1), 65-71. https://doi.org/10.1504/IJCAT.2006.008669
- Jee, D. H., & Kang, K. J. (2000). A method for optimal material selection aided with decision making theory. Materials and Design, 21(3), 199-206. https://doi.org/10.1016/S0261-3069(99)00066-7
- Keoleian, G. A. et al. (2005). Life cycle modeling of concrete bridge design: Comparison of engineered cementitious composite link slabs and conventional steel expansion joints. Journal of Infrastructure Systems, 11(1), 51-60. https://doi.org/10.1061/(ASCE)1076-0342(2005)11:1(51)
- Kosednar, J., & Mailvaganam N. P. P. (2005). Selection and use of polymer-based materials. In the repair of concrete structures. Journal of performance of constructed facilities, 10(3) 229-233.
- Liao, T. W. (1996). A fuzzy multicriteria decision-making method for material selection. Journal of Manufacturing Systems, 15(1), 1-12. https://doi.org/10.1016/0278-6125(96)84211-7
- Mailvaganam, N. P. P. (2001). Concrete repair and rehabilitation, issues and trends. Indian Concrete Journal, 75(12), 759-764.
- McDonald, J., et al. (2000). Development of performance criteria for dimensionally compatible cement-based repair materials. ACI Special Publications, 193, 441-458.
- Nabhan, F. (2007). Selection of repair materials using expert advice. Indian Concrete Journal, 81(6), 51-54.
- Rao, R. V. (2006). A material selection model using graph theory and matrix approach. Materials Science and Engineering, 431(12), 248-255. https://doi.org/10.1016/j.msea.2006.06.006
- Rao, R. V. (1954). A decision making methodology for material selection using an improved compromise ranking method. Materials and Design, 29(10), 1949-1954.
- Rao, R. & Davim, J. (2008). A decision-making framework model for material selection using a combined multiple attribute decision-making method. The International Journal of Advanced Manufacturing Technology, 35(7), 751-760. https://doi.org/10.1007/s00170-006-0752-7
- Raupach, M. (2006). Concrete repair according to the new European standard EN 1504. Concrete Repair, Rehabilitation and Retrofitting. London: Taylor & Francis Group.
- Rizzo, E. M., & Sobelman M. B. (1989). Selection criteria for concrete repair materials. Concrete International, 11(9), 46-49.
- Saaty, T. L. (1980). The analytical hierarchy process. McGraw- Hill, New York.
- Saaty, T. L. (1990). The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation (Decision-Making Series). New York: Mcgraw-Hill.
- Saaty, T. L. (1990). How to make a decision, The analytic hierarchy process. European Journal of Operational Research, 48(1), 9-26. https://doi.org/10.1016/0377-2217(90)90057-I
- Saaty, T. L. (1994). Fundamentals of decision making. Pittsburgh: RWS Publications.
- Saaty, T. L. (1994). How to make a decision: The analytic hierarchy process. European Journal of Operational Research, 48(1), 9-26.
- Saaty, T. L. (2008). Decision making with the analytic hierarchy process. International Journal of Services Sciences, 1(1), 83-98. https://doi.org/10.1504/IJSSCI.2008.017590
- Saaty, T. L., & Vargas L. G. (1987). Uncertainty and rank order in the analytic hierarchy process. European Journal of Operational Research, 32(1), 107-117. https://doi.org/10.1016/0377-2217(87)90275-X
- Sapuan, S. (2001). A knowledge-based system for materials selection in mechanical engineering design. Materials and Design, 22(8), 687-695. https://doi.org/10.1016/S0261-3069(00)00108-4
- Shanian, A., & Savadogo, O. (2006). A material selection model based on the concept of multiple attribute decision making. Materials and Design, 27(4), 329-337. https://doi.org/10.1016/j.matdes.2004.10.027
- Singh, V. (2005). Selection of polymers for repair and rehabilitation of RC structures. Indian Concrete Journal, 10 35-38.
- Sirisalee, P. P., et al. (2004). Multi-criteria material selection in engineering design. Advanced Engineering Materials, 6(12), 84-92. https://doi.org/10.1002/adem.200300554
- Smith, R. L., Bush R. J., & Schmoldt D. L. (1997). The selection of bridge materials utilizing the analytical hierarchy process, Notes.
- Smith, R. L., Bush R. J., & Schmoldt D. L. (1995). A hierarchical model and analysis of factors affecting the adoption of timber as a bridge material. Wood and Fiber Science, 27(3), 225-238.
- Smith, W. F., & Hashemi J. (2006). Foundations of materials science and engineering (4th ed.). New York: Mcgraw Hill.
- Steeves, C. A., & Fleck N. A. (2004). Material selection in sandwich beam construction. Scripta Materialia, 50(10), 1335-1339. https://doi.org/10.1016/j.scriptamat.2004.02.015
- Stuart, J. A., & Sommerville, R. M. (1998). Materials selection for life cycle design. IEEE.
- Vaidya, O. S., & Kumar, S. (2006). Analytic hierarchy process, An overview of applications. European journal of operational research, 169(1), 1-29. https://doi.org/10.1016/j.ejor.2004.04.028
- Vargas, L. G. (1990). An overview of the analytic hierarchy process and its applications. European Journal of Operational Research, 18(1), 2-8.
- Vaysburd, A., et al. (2000). Performance criteria for selection of repair materials. ACI Special Publications, 192, pp. 931-948.
- Vaysburd, A. et al. (2000). Selecting durable repair materials, performance criteria-field studies. Concrete International, 22(12), 39-45.
- Vokurka, R. J., Choobineh, J., & Vadi, L. (1996). A prototype expert system for the evaluation and selection of potential suppliers. International Journal of Operations & Production Management, 16(12), 106-127. https://doi.org/10.1108/01443579610151788
- Yurdakul, M. (2004). AHP as a strategic decision-making tool to justify machine tool selection. Journal of Materials Processing Technology, 146(3), 365-376. https://doi.org/10.1016/j.jmatprotec.2003.11.026
- Zahedi, F. (1986). The analytic hierarchy process: A survey of the method and its applications. Interfaces, 16, 96-108.
- Zahedi, F. (1986). The analytic hierarchy process: A survey of the method and its applications. Interfaces, 16(4), 96-108. https://doi.org/10.1287/inte.16.4.96
- Zhou, C. C., Yin, G. F., & Hu, X. B. (2009). Multi-objective optimization of material selection for sustainable products, artificial neural networks and genetic algorithm approach. Materials and Design, 30(4), 1209-1215. https://doi.org/10.1016/j.matdes.2008.06.006
피인용 문헌
- MULTI-CRITERIA DECISION MAKING IN CIVIL ENGINEERING. PART II - APPLICATIONS vol.7, pp.4, 2015, https://doi.org/10.3846/2029882x.2016.1139664
- Green material selection for sustainability: A hybrid MCDM approach vol.12, pp.5, 2017, https://doi.org/10.1371/journal.pone.0177578
- Evaluation of the Compatibility of Repair Materials for Concrete Structures vol.11, pp.3, 2012, https://doi.org/10.1007/s40069-017-0208-5
- Decision Support Model for Design of High-Performance Concrete Mixtures Using Two-Phase AHP-TOPSIS Approach vol.2019, pp.None, 2019, https://doi.org/10.1155/2019/1696131
- Selection of Sustainable Supplementary Concrete Materials Using OSM-AHP-TOPSIS Approach vol.2019, pp.None, 2019, https://doi.org/10.1155/2019/2850480
- Development of a Novel Magnetic Brake Shoe for Mine Hoists Based on Nano-Fe3O4 and Nd-Fe-B Additive vol.13, pp.2, 2012, https://doi.org/10.2174/1872210513666190308133036
- 비용효율을 고려한 자기 충전형 콘크리트의 CCD 실험설계법 및 가중 다목적성 기반 다목적설계최적화(MODO) vol.24, pp.3, 2012, https://doi.org/10.11112/jksmi.2020.24.3.26
- Assessment of effective patching material for concrete bridge deck -A review vol.293, pp.None, 2012, https://doi.org/10.1016/j.conbuildmat.2021.123520
- Optimal Selection of High-Performance Concrete for Post-Tensioned Girder Bridge Using Advanced Hybrid MCDA Method vol.14, pp.21, 2021, https://doi.org/10.3390/ma14216553