References
- ACI Committee 318. (1999). Building code requirements for reinforced concrete (ACI 318-89) and commentary-ACI 318R-89. Farmington Hills: American Concrete Institute.
- ACI Committee 318. (2008). Building code requirements for reinforced concrete and commentary (ACI 318M-08), American Concrete Institute.
- ASTM. (2003). Standard test method for slump of hydrauliccement concrete. C143 M-03, West Conshohocken, Pennsylvania.
- ASTM. (2005). Standard test method for compressive strength of cylindrical concrete specimens. C39-05, West Conshohocken, Pennsylvania.
- ASTM. (2007). Standard practice for making and curing concrete test specimens in the laboratory. C192-07, West Conshohocken, Pennsylvania.
- Bakir, P. G., & Boduroglu, H. M. (2005). Mechanical behavior and non-linear analysis of short beams using softened truss and direct strut and tie models. Engineering Structures, 27, 639-651. https://doi.org/10.1016/j.engstruct.2004.12.003
- Bouzoubaaˆ, N., & Lachemi, M. (2001). Self-compacting concrete incorporating high volumes of class F fly ash: Preliminary results. Cement and Concrete Research, 31, 413- 420. https://doi.org/10.1016/S0008-8846(00)00504-4
- Broomfield, J. (2003). The identification and assessment of defects, damage and decay. In S. MacDonald (Ed.), Concrete: Building pathology. Oxon: Blackwell.
- Choi, Y. W., Cho, S. K., Choi, W., Kim, K. H., & An, S. I. (2003). Properties of medium strength self-compacting concrete with simple mix design method. Proceedings of the Korea Concrete Institute, 15, 83-88.
- Choi, Y. W., Jung, M. Y., Chung, J. S., Moon, D. J., & An, S. I. (2002). Optimum mixture proportion of self-compacting concrete considering packing factor of aggregate and fine aggregate volume ratio. Proceedings of the Korea Concrete Institute, 14, 549-554. https://doi.org/10.4334/JKCI.2002.14.4.549
- Choi, Y. W., Kim, Y. J., & Kang, H. J. (2008). A study on the flowability properties of the high flowing self-compacting concrete for members of bridge precast. Korea Society of Civil Engineers, 28, 155-163.
- Choi, Y. W., Kim, Y. J., Shin, H. C., & Moon, H. Y. (2006). An experimental research on the fluidity and mechanical properties of high-strength lightweight self-compacting concrete. Cement and Concrete Research, 36, 1595-1602. https://doi.org/10.1016/j.cemconres.2004.11.003
- Choulli, Y., Mari, A. R., & Cladera, A. (2008). Shear behavior of full-scale prestressed I-beams made with self compacting concrete. Materials and Structures, 41, 131-141.
- Crist, R. A. (1971). Static and dynamic shear behavior of uniformly reinforced concrete deep beams. Report No. AFWL-TR-71-74, University of New Mexico (CERF), Kirkland Air Force Base, Mexico, November, 1971.
- de Pavia, H. A. R., & Siess, C. P. (1965). Strength and behavior of deep beams in shear. ASCE Proceedings, 91, 19-41.
- Domone, P. L. (2006). Self-compacting concrete: An analysis of 11 years of case studies. Cement and Concrete Composites, 28, 197-208. https://doi.org/10.1016/j.cemconcomp.2005.10.003
- Hassan, A. A. A., Hossain, K. M. A., & Lachemi, M. (2008). Behavior of full-scale self-consolidating concrete beams in shear. Cement and Concrete Composites, 30, 588-596. https://doi.org/10.1016/j.cemconcomp.2008.03.005
- Hassan, A. A. A., Hossain, K. M. A., & Lachemi, M. (2010). Structural assessment of corroded self-consolidating concrete beams. Engineering Structures, 32, 874-885. https://doi.org/10.1016/j.engstruct.2009.12.013
- Hsu, T. T. C. (1998). Unified approach to shear analysis and design. Cement and Concrete Composites, 20, 419-435. https://doi.org/10.1016/S0958-9465(98)00028-6
- Japan Society of Civil Engineering (2005). Guide to construction of high flowing concrete, Gihoudou Pub, Tokyo.
- Lachemi, M., Hassain, K. M. A., Lambros, V., Nkinamubanzi, P. C., & Bouzoubaa, N. (2005). Self-compacting concrete incorporating new viscosity modifying admixtures. Cement and Concrete Research, 24, 917-926.
- Londhe, R. S. (2011). Shear strength analysis and prediction of reinforced concrete transfer beams in high-rise buildings. Structural Engineering and Mechanics, 37(1), 39-59. https://doi.org/10.12989/sem.2011.37.1.039
- MacGregor, J., & Wight, J. K. (2006). Reinforced concrete mechanics and design: Fourth edition in SI units. Upper Saddle River, NJ: Prentice Hall.
- Mau, S. T., & Hsu, T. T. C. (1987). Shear strength prediction for deep beams with web reinforcement. ACI Structural Journal, 84, 513-523.
- Mau, S. T., & Hsu, T. T. C. (1989). Formula for the shear design of deep beam. Structural Journal of the American Concrete Institute, 86, 516-523.
- Okamura, H. (1999). Self-compacting high performance concrete. Tokyo: Social System Institute.
- Okamura, H., Maekawa, K., & Ozawa, K. (1998). High performance concrete. Tokyo: Gihoudou Pub.
- Omeman, Z., Nehdi, M., & El-Chabib, H. (2008). Experimental study on shear behavior of carbon-fiber-reinforced polymer reinforced concrete short beams without web reinforcement. Canadian Journal of Civil Engineering, 35(1), 1-10. https://doi.org/10.1139/L07-080
- Shah, D. L., & Modhera, C. D. (2010). Evaluation of shear strength of self compacting concrete deep beam. International Journal of Advanced Engineering Technology, 1, 292-305.
- Stephen, J. F., & Gilbert, R. I. (1998). Experimental studies on high-strength concrete deep beams. ACI Structural Journal, 95, 382-390.
- Su, N., Hsu, K. C., & Chai, H. W. (2001). A simple mix design method for self-compacting concrete. Cement and Concrete Research, 31, 1799-1807. https://doi.org/10.1016/S0008-8846(01)00566-X
- Uribe, C. S., & Alcocer, S. M. (2002). SP-208 Example 1a: Deep beam design in accordance with ACI 318-2002. American Concrete Institute, 65-81.
- Yang, K. H., Chung, H. S., Lee, E. T., & Eun, H. C. (2003). Shear characteristics of high-strength concrete deep beams without shear reinforcements. Engineering Structures, 25, 1343-1352. https://doi.org/10.1016/S0141-0296(03)00110-X
Cited by
- Maximum Shear Strength of Slender RC Beams with Rectangular Cross Sections vol.141, pp.7, 2012, https://doi.org/10.1061/(asce)st.1943-541x.0001156
- Discussion of “Shear Strength Prediction in Reinforced Concrete Deep Beams Using Nature-Inspired Metaheuristic Support Vector Regression” by Jui-Sheng Chou, Ngoc-Tri Ngo, and Anh-Duc Pham vol.30, pp.1, 2012, https://doi.org/10.1061/(asce)cp.1943-5487.0000546
- Structural behaviour of deep beam using S.C.C. with chopped strands and polypropylene fibre vol.30, pp.2, 2012, https://doi.org/10.3233/ifs-151847
- Experimental investigation on continuous reinforced SCC deep beams and Comparisons with Code provisions and models vol.131, pp.None, 2017, https://doi.org/10.1016/j.engstruct.2016.11.005
- Shear Behavior of Hybrid Fiber Reinforced Concrete Deep Beams vol.11, pp.10, 2012, https://doi.org/10.3390/ma11102023
- Structural Performance of RC Beams containing Tension-Only Nodes vol.12, pp.1, 2012, https://doi.org/10.1186/s40069-018-0228-9
- Shear strength and Characterization of Reinforced Concrete Deep Beams -A Review vol.1076, pp.1, 2012, https://doi.org/10.1088/1757-899x/1076/1/012122
- Numerical Verification of Strut and Tie Models and Failure Modes of Reinforced Self-Compacting Concrete Deep Beams vol.53, pp.None, 2012, https://doi.org/10.4028/www.scientific.net/jera.53.76