DOI QR코드

DOI QR Code

The Process Efficiency Evaluation of the Food Supernatant Using A/G (Acid/Gas) Phased Anaerobic Digestion

산/가스 분리 혐기소화공정을 이용한 음식물 탈리액의 처리효율 평가

  • Bae, Jong-Hun (Department of Environmental Engineering, Chungbuk National University) ;
  • Park, Noh-Back (National Academy of Agricultural Science) ;
  • Tian, Dong-Jin (Department of Environmental Engineering, Chungbuk National University) ;
  • Jun, Hang-Bae (Department of Environmental Engineering, Chungbuk National University) ;
  • Yang, Seok-Jun (KS Industry)
  • Received : 2011.08.31
  • Accepted : 2012.03.28
  • Published : 2012.03.30

Abstract

Several acidogenesis batch tests, and BMP (Biochemical Methane Potential) with food waste leachate was tested at various organic loading rates (OLRs) on the mesophilic ($35^{\circ}C$) and thermophilic ($55^{\circ}C$) conditions. In acidogenesis batch test, VS removal efficiencies were 27.3% and 30.6% at $35^{\circ}C$ and $55^{\circ}C$, respectively. Removal efficiency of VS at $55^{\circ}C$ was higher than that at $35^{\circ}C$. With decrease in VS, SCOD increased as reaction time increased. Solubilization efficiency of VS were 27.4% and 33.4% at each reaction temperature within 4 days acid fermentation. Methane yield were 461 and 413 $mLCH_4/gVS$ at mesophilic and thermophilic BMP test, respectively. SCOD solubilizations in the themophilic acid fermenter showed 8~17% higher than those in the mesophilic fermenter. COD removal efficiency showed higher in the mesophilic acid fermenter at low organic loading rate. While at high organic loading rate, it was higher in the thermophilic acid fermenter. VS removal efficiency was higher at the mesophilic temperature, however, it decreased at OLR higher than 6 kg $COD/m^3{\cdot}day$. On the contrary, VS removal efficiency did not decrease but maintain at thermophilic temperature. The amount of methane gas generated from mesophilic methanogenesis digester was 12.6, 21.6, 27.4 L/day at OLR of 4, 5, 6 $COD/m^3{\cdot}day$, respectively. The amount of methane gas generated from themophilic methanogenesis digester was 14.3, 20.6, 25.2 L/day at each OLR, respectively, which is about 15~20 L/day lower than those generated at mesophilic digester.

본 연구는 음식물쓰레기를 혐기성 소화를 이용하여 중온 및 고온에서의 OLR에 따른 처리효율을 평가하였다. 실험은 중온($35^{\circ}C$) 및 고온($55^{\circ}C$)의 온도조건에서 산발효 회분식 실험, BMP test 그리고 연속식 실험을 실시하였다. 산발효 회분식 실험의 경우 VS 제거효율은 각각의 온도에서 27.3, 30.6%이었으며, $35^{\circ}C$에 비해 $55^{\circ}C$에서 제거효율이 더 높았다. VS와는 반대로 SCOD는 시간이 지남에 따라 농도가 증가하였고, 각 온도의 가용화율은 27.4, 33.4%로 VS가 제거되는 농도와 SCOD가 증가하는 농도가 비슷하였다. BMP test에서 최종 메탄수율 결과 중온 461, 고온 413 $mL{\cdot}CH_4/gVS$가 발생하였다. 산발효조에서 SCOD 가용화율은 고온이 중온에 비해 8~7% 정도 높게 나타났다. 중온메탄발효조의 경우 낮은 유기물 부하에서 고온메탄 발효조에 비해 유기물제거 효율이 높게 나타났지만 높은 유기물 부하에서는 고온메탄발효조가 유리하였다. 고온메탄발효조의 VS제거 효율이 중온에 비해 낮은 경향이었으나, 6 $kgCOD/m^3{\cdot}day$ 고형물 농도에서는 중온소화의 VS제거 효율은 감소하였다. 중온메탄생성조의 유기물 부하에 따른 가스발생량은 12.6, 21.6, 27.4 L/day이었고, 고온의 경우 14.3, 20.6, 25.2 L/day로 중온소화에 비해 각각의 모드별로 약 5~10% 낮은 메탄발생량을 나타내었다.

Keywords

References

  1. 환경부(2007b), 음식물류 폐기물 처리시설 발생폐수 육상처리 및 에너지화 종합대책(2008-2012).
  2. 윤애화, 박노백, 배종훈, 전항배, 권영배, "순산소 Jet 폭기 시스템을 이용한 음폐수 처리 특성," 상하수도학회지, 24(6), 763-773(2010).
  3. 환경부(2004-2007c), 전국 음식물류폐기물 발생 및 처리 현황
  4. 환경부(2009), 전국 음식물류폐기물 발생 및 처리현황
  5. 한선기, 신항식, 김상현, 김현우, "음식물쓰레기의 구성 성분에 따른 산발효조의 거동 특성," 유기성자원학회지, 10(2), 65-70(2002).
  6. Tafdrup, S., "Viable energy production and waste recycling from anaerobic digestion of manure and other biomass materials," Biomass Bioenergy, 9(5), 0-14(1995).
  7. Ghosh, S., Chynoweth, D. P. and Tarman, P. B., "Two phase anaerobic digestion," U.S. Patent, 4, 696-746(1987).
  8. Owen, J. M. and Chynoweth, D. P., "Biochemical methane potential of MSW components," Proc. Symp. on Anaerobic Digestion of Solid Waste, 29-42(1992).
  9. Yu, H, Fang, and H. H. P., "Acidogenesis of dairy wastewater at various pH levels," Water Sci. Technol., 45(10), 201-206(2002).
  10. Ghosh, S. and Pohland, G. G., "Kinetics of substrate assimilation and product formation in anaerobic digestion," J. Water Pollut. Control Fed., 45, 748-759(1974).
  11. Lettinga, G., Hulshoff Pol, L. W., Koster, I. W., Wiegant, W. M., de Zeeuw, W. J., Rinzema, A., Grin, P. C., Roersma, R. E. and Hobma, S. W., "High rate anaerobic wastewater treatment using the UASB reactor under a wide range of temperature conditions," Biotechnol. Genet. Eng. Rev., 2, 253-284(1984) https://doi.org/10.1080/02648725.1984.10647801
  12. Alexiou, I. E., Anderson, G. K. and Evison, L. M., "Design of preacidification reactors for the anaerobic treatment of industrial wastewaters," Water Sci. Technol., 29, 199-204 (1994).
  13. Guerrero, L., Omil, F., Méndez, R. and Lema, J. M., "Anaerobic hydrolysis and acidogenesis of wastewaters from food industries with high content of organic solids and protein," Water Res., 33(15), 3281-3290(1999). https://doi.org/10.1016/S0043-1354(99)00041-X
  14. Yu, H., Fang, H. H. P. and Gu, G., "Comparative performance of mesophilic and thermophilic acidogenic upflow reactors," Proc. Biochem., 38, 447-454(2002). https://doi.org/10.1016/S0032-9592(02)00161-9
  15. Dinsdale, R. M., Hawkes, F. R. and Hawkes, D. L., "Mesophilic and thermophilic anaerobic digestion with thermophilic preacidification of instant-coffee-production wastewater," Water Res., 31(8), 1931-1938(1997). https://doi.org/10.1016/S0043-1354(97)00041-9
  16. Kim, M., Ahn, Y. and Speece, R. E., "Comparative process stability and efficiency of anaerobic digestion; mesophilic vs. thermophilic," Water Res., 36, 4369-4385(2002). https://doi.org/10.1016/S0043-1354(02)00147-1
  17. 허안희, 이은영, 김희준, 배재호, "실험실 규모 2상 혐기성 소화를 이용한 음식물 쓰레기 탈리액의 처리, 대한환경공학회지, 30(12), 1231-1238(2008).
  18. APHA, Standard methods for the examination of water and wastewater, 20th ed., New York(1998).
  19. 박우균, 전항배, 권순익, 채규정, 박노백, "돈분 슬러리 성상에 따른 최적 바이오가스 회수" 한국환경농학회지, 29(2), 197-205(2010).
  20. Kim, M., Gomec, C. Y., Ahn, Y. and Speece, R. E., "Hydrolysis and acidogenesis of particulate organic material in mesophilic and thermophilic anaerobic digestion" Environ. Technol., 24, 1183-1190(2003). https://doi.org/10.1080/09593330309385659
  21. 박종부, 최성수, 박승국, 허형우, 한승호, "음식물 쓰레기의 이상 고온 혐기성 소화 공정 연구," 대한환경공학회지, 10 (1), 39-45(2002).
  22. Komemoto, K., Lim, Y. G., Nagao, N., Niwa, C. and Toda, T., "Effect of temperature on VFA's and biogas production in anaerobic solubilization of food waste," Water Sci. Technol., 29, 2950-2955(2009).
  23. Gomec, C. Y., Kim, M., Ahn, Y. and Speece, R. E., "The role of pH in mesophilic anaerobic sludge solubilization," J. Environ. Sci. and Health A, 37, 1871-1878(2002). https://doi.org/10.1081/ESE-120015467
  24. Komemoto, K., Lim, Y. G., Nagao, N., Niwa, C. and Toda, T., "Effect of temperature n VFA's and biogas production in anaerobic solubilization of food waste" Water Sci. Technol., 29, 2950-2955(2009).
  25. Kim, M. I., Ahn, Y. H. and Speece, R. E., "Comparative process stability and efficiency of anaerobic digestion; mesophilic vs thermophilic," Water Res., 83, 4369-4385(2002).
  26. Song, Y. C., Kwon, S. J. and Woo, J. H., "Mesophilic and thermophilic temperature co-phase anaerobic digestion compared with single-stage mesophilic- and thermophilic digestion of sewage sludge," Water Res., 38, 1653-1662(2004). https://doi.org/10.1016/j.watres.2003.12.019
  27. Harris, W. L. and Dague, R. R., "Comparative performance of anaerobic filters at mesophilic and thermophilic temperatures," Water Environ. Res., 65(6) 764-771(1993). https://doi.org/10.2175/WER.65.6.9
  28. Wiegant, W. M., Hennink, M. and Lettinga, G., "Separation of the propionate degradation to improve the efficiency of thermophilic anaerobic treatment of acidified wastewater," Water Res., 20(4), 517-524(1986). https://doi.org/10.1016/0043-1354(86)90202-2
  29. Zinder, S. H., Anguish, T. and Cardwell, S. C., "Effect of temperature on methanogenesis in a thermophilic anaerobic digester," Appl. Environ. Microbiol., 47(4), 808-813(1984).
  30. Ahn, J. H. and Forster, C. F., "A comparison of mesophilic and thermophilic anaerobic upflow filters," Bioresour. Technol., 73, 201-205(2000). https://doi.org/10.1016/S0960-8524(99)00177-7
  31. Speece, R. E., "Anaerobic biotechnology for industrial waste waters," Nashville, TN: Archae Press(1996).
  32. Pohland, F. G. and Ghosh, S., "Developments in anaerobic treatment process," Biotechnology Bioengineering, 2, 85-106 (1971)