DOI QR코드

DOI QR Code

Effect of Mechanical Agitation on Generation of Airborne Bacteria and Endotoxin in Exhaust Gases from Lab-Scale Composting of Sewage Sludge

실험실 규모 하수슬러지 퇴비화공정에서 기계적 교반이 배출가스 내 부유세균과 내독소의 발생특성에 미치는 영향

  • Kim, Ik-Hyeon (Department of Environmental Engineering, Seoul National University Science and Technology) ;
  • Kim, Ki-Youn (Department of Industrial Health, Catholic University of Pusan) ;
  • Phae, Chae-Gun (Department of Environmental Engineering, Seoul National University Science and Technology) ;
  • Kim, Dae-Keun (Department of Environmental Engineering, Seoul National University Science and Technology)
  • 김익현 (서울과학기술대학교 환경공학과) ;
  • 김기연 (부산가톨릭대학교 산업보건학과) ;
  • 배재근 (서울과학기술대학교 환경공학과) ;
  • 김대근 (서울과학기술대학교 환경공학과)
  • Received : 2012.01.04
  • Accepted : 2012.02.29
  • Published : 2012.03.30

Abstract

This study was performed to investigate the concentration variation of airborne bacteria and endotoxin by the temperature in the compost pile in order to identify the generation characteristics of biological factors in the exhaust gases generated from lab-scale sludge compositing reactors (0.06 $m^3$ of total reactor volume). Airborne bacteria showed the highest concentration of generation ($1.03{\times}10^5\;CFU/m^3$) in the composting reactor without mechanical agitation, and similar change tendency to temperature variation of composting, but somewhat lower statistical significance (p>0.05). In the compost reactor with mechanical agitation, endotoxin showed similar generation characteristic to temperature variation of composting (statistical significance; p<0.05) and the highest generation concentration to 1,415 EU/$m^3$. Mechanical agitation of the composting process affected activity of microorganism and positive generation of endotoxin in exhaust gases. Endotoxin and airborne bacteria showed similar tendency of generation, especially the highest statistical correlation was observed in the compost reactor without mechanical agitation (statistical significance: p<0.01).

본 연구는 퇴비화 공정에서 발생되는 배출가스 내 생물학적 인자의 발생 특성을 파악하기 위하여 퇴비단 온도변화에 따른 부유세균과 내독소의 발생농도를 관찰하였다. 실험은 도시하수슬러지를 대상으로 실험실 규모의 기계적 교반이 가능한 퇴비화 장치(반응기 부피 0.06 $m^3$)에서 실시되었다. 부유세균은 미교반 퇴비화 공정에서 퇴비단 온도변화와 유사한 발생경향을 보였지만 통계적 유의성이 다소 낮았고(p>0.05), 최고 발생농도는 $1.03{\times}10^5\;CFU/m^3$이었다. 내독소는 기계교반 퇴비화 공정에서 퇴비단의 온도변화와 유사한 발생경향을 보였으며(통계적 유의성: p<0.05), 최고 발생농도는 1,415 EU/$m^3$이었다. 퇴비화 공정의 기계적 교반이 퇴비단 미생물의 활성과 이에 따른 배출가스 중 내독소 발생 증가에 영향을 미친 것으로 보인다. 내독소의 발생농도와 부유세균의 발생농도는 유사한 발생 경향을 보였으며, 특히 미교반 퇴비화공정에서 높은 통계적 상관성이 나타났다(통계적 유의성: p<0.01).

Keywords

References

  1. 환경부, "2009년 하수슬러지 통계," (2010).
  2. 환경부, "09년도 공공하수처리시설 운영관리실태 분석결과," (2010).
  3. Fischer, G., Albrecht, A., Jackel, U. and Kampfer, P., "Analysis of airborne microorganisms, MVOC and odour in the surrounding of composting facilities and implications for future investigations," Int. J. Hyg. Environ. Health, 211(1-2), 132-142(2008). https://doi.org/10.1016/j.ijheh.2007.05.003
  4. Pastuszka, J. S., Kyaw Tha Paw, U., Lis, D. O., Wlazlo, A. and Ulfig, K., "Bacterial and fungal aerosol in indoor environment in Upper Silesia, Poland," Atmos. Environ., 34(22), 3833-3842(2000). https://doi.org/10.1016/S1352-2310(99)00527-0
  5. 홍길환, 차재두, 고영환, 이정훈, 임은주, 김경섭, "음식물 쓰레기 퇴비화시설의 악취 배출 성상 조사," 한국냄새환경학회지, 5(3), 194-201(2006).
  6. Burge, H. A., Bioaerosols, CRC Press, Boca Raton, Florida, (1995).
  7. Olson, D. K. and Bark, S. M., "Health hazards affecting the animal confinement farm worker," Am. Assoc. Occup. Health Nurse J., 44(4), 198-204(1996).
  8. Fiske, M. J., Fredenburg, R. A., VanDerMeid, K. R., Mc- Michael, J. C. and Arumugham, R., "Method for reducing endotoxin in Moraxella catarrhalis UspA2 protein preparations," J. Chromatogr. B., 753(2), 269-278(2001). https://doi.org/10.1016/S0378-4347(00)00561-2
  9. 배재근, 신편 폐기물처리공학, 구미서관, 서울, pp. 470-497 (2005).
  10. 황선숙, 황의영, 남궁완, "교반강도가 퇴비화에 미치는 영향," 유기성폐기물자원화학회, 3(2), 47-57(1995).
  11. Willeke, K., Lin, X. and Grinshpun, S. A., "Improved aerosol collection by combined impaction and centrifugal motion," Aero. Sci. Technol., 28(5), 439-456(1998). https://doi.org/10.1080/02786829808965536
  12. Angenent, L. T., Kelley, S. T., Amand, A. St., Pace, N. R., and Hernandez, M. T., "Molecular identification of potential pathogens in water and air of a hospital therapy pool," Proc. Natl. Acad. Sci., 102(13), 4860-4865(2005). https://doi.org/10.1073/pnas.0501235102
  13. Chen, P. and Li, C., "Quantification of airborne mycobacterium tuberculosis in health care setting using real-time qPCR coupled to an air-sampling filter method," Aero. Sci. Technol., 39(4), 371-376(2005). https://doi.org/10.1080/027868290945767
  14. Nehme', B., Gilbert, Y., Le'tourneau, V., Forster, R. J., Veillette, M. and Villemur, R., "Culture-independent characterization of archaeal biodiversity in swine confinement building bioaerosols," Appl. Environ. Microbiol., 75(17), 5445-5450 (2009). https://doi.org/10.1128/AEM.00726-09
  15. Lembke, L. L., Kniseley, R. N., Van Nostrand, R. C. and Hale, M. D., "Precision of the all-glass impinger and the Andersen microbial impactor for air sampling in solid waste handling facilities," Appl. Environ. Microbiol., 42(2), 222-225 (1981).
  16. Terzieva, S., Donnelly, J., Ulevicius, V., Grinshpun, S. A., Willeke, K., Stelma, G. N. and Brenner, K. P., "Comparison of methods for detection and enumeration of airborne microorganisms collected by liquid impingement," Appl. Environ. Microbiol., 62(7), 2264-2272(1996).
  17. Hamelers, H. V. M., "A theoretical model of composting kinetics," Science and Engineering of composting, Hoitink, H. A. J., and Keener, H. M.(Eds.), Renaissance Publications, Worthington, pp. 36-58(1993).
  18. Miller, F. C. and Macauley, B. L., "Materials balance in the composting of sewage sludge as affected by process control strategy," J. Water Pollut. Control Fed., 57(2), 122-127(1985).
  19. Harper, E. R., Miller, F. C. and Macauley, B. J., "Physical management and interpretation of an environmentally controlled composting ecosystem," Aust. J. Exp. Agric., 32(5), 657-667(1992). https://doi.org/10.1071/EA9920657
  20. 김기연, 최홍림, 고한종, 김치년, "축분 퇴비화시스템 운용방식에 따른 실내 대기오염 평가," 동물자원지, 46(2), 283-294(2004).
  21. Miller, F. C., Macgregor, S. T., Finestein, M. S. and Cirello, J., "Biological drying of sewage sludge-a new composting process," in Proceedings of ASCE Environmental Engineering Division Specialty Conference, New York, pp. 40-49 (1980).
  22. Bagstam, G., "Population changes in microorganisms during composting of spruce-bark. II. Mesophilic and themophilic microorganisms during controlled composting," Eur. J. Appl. Microbiol. Biotechnol., 6(3), 279-288(1979). https://doi.org/10.1007/BF00508100
  23. 정재춘, 박형숙, 김중기, 박용남, 김경숙, 원효정, "퇴비화 공정에 출현하는 미생물의 종류 및 생태학적 기능," 폐기물자원화, 7(2), 1-23(1999).
  24. U.S.A. Occupational Safety and Health Administration, OS HA Technical manual section III: Chapter 2 Indoor air quality investigation, http://www.osha.gov(1999).
  25. H. K. Special Administrative Region, Guidance notes for the management of indoor air quality in offices and public places, http://www.laq.gov.hk(2003).
  26. Pankhurst, L. J., Deacon, L. J., Liu, J., Drew, G. H., Hayes, E. T., Jackson, S., Longhurst, P. J., Pollard, J. W. S. and Tyrrel, S. F., "Spatial variations in airborne microorganism and endotoxin concentrations at green waste composting facilities," Int. J. Hyg. Environ. Health, 214(5), 376-383 (2011). https://doi.org/10.1016/j.ijheh.2011.06.001
  27. Petsch, D. and Anspach, F. B., "Endotoxin removal from protein solutions," J. Biotechnol., 76(2-3), 97-119(2000). https://doi.org/10.1016/S0168-1656(99)00185-6
  28. 한국산업안전보건공단, "생물학적 인자 측정 및 평가방법 연구(II)," (2010).
  29. 박동욱, "생물학적 유해인자에 의한 건강장해와 노출 평가법," 산업보건, No. 4(2004).