DOI QR코드

DOI QR Code

Changes in the Characteristics of Dissolved Organic Matter by Microbial Transformation and the Subsequent Effects on Copper Binding

생분해에 따른 용존 유기물질 성상 및 중금속 구리와의 결합특성 변화

  • Jung, Ka-Young (Department of Environment & Energy, Sejong University) ;
  • Hur, Jin (Department of Environment & Energy, Sejong University)
  • 정가영 (세종대학교 환경에너지융합학과) ;
  • 허진 (세종대학교 환경에너지융합학과)
  • Received : 2011.10.05
  • Accepted : 2012.01.20
  • Published : 2012.01.31

Abstract

Microbial changes in the characteristics of dissolved organic matter (DOM) and the subsequent effects on the conditional stability constants of copper were investigated using 14 day-incubations of Pony Lake fulvic acid (PLFA), Suwannee River fulvic acid (SRFA) and the mixtures of the humic substances and glucose. After incubation, dissolved organic carbon (DOC) concentrations were diminished, and specific UV absorbance values and DOC-normalized fluorescence intensities increased. The microbial changes were minimal for the samples contaning humic substances only whereas they were much pronounced for the mixtures with glucose. The extent of the changes increased with a higher content of glucose in the mixtures. The same trend was observed even for glucose solution. Our results suggest that labile organic moieties may be transformed into more chromophoric and humidified components by biodegradation. For the mixture samples, the copper binding stability constants did not change or even decreased after incubation. Therefore, microbially induced enrichment of the fulvic- and humic-like carbon structures in DOM appears to result in little change or the decrease of the copper binding coefficients.

본 연구에서는 수 환경 내에서 일어나는 주요 자연분획변환 과정 중 생분해 시 변화하는 용존 유기물질의 특성이 중금속 결합특성에 미치는 영향을 조사하고자 하였다. 각각 호수와 하천 기원을 대표하는 Pony lake fulvic acid와 Suwannee river fulvic acid를 포함한 다양한 유기물을 대상으로 2주간 배양실험을 하여 변화하는 농도, 성상 및 중금속 구리 결합특성을 조사한 결과 각 시료 내 DOC농도는 감소하고 SUVA 값은 증가하였다. 특히 포도당 및 단백질계 탄소구조 함유비율이 높을수록 미생물에 의한 DOC 농도 분해율은 증가하였다. 포도당과 휴믹물질의 혼합비를 고려한 경우 배양 후 예측되는 혼합액의 DOC 감소율은 실제 측정값과 유사하였다. 그러나 SUVA값은 오히려 더 높게 나타나 생분해성 물질과 휴믹물질이 혼재할 경우 탄소 구조 변화로 인한 휴믹화의 진행이 더 크게 나타날 수 있음을 보였다. Synchronous 형광스펙트럼 결과 배양 후 Pony lake fulvic acid의 경우 휴믹산계 형광특성이, Suwannee river fulvic acid에서는 펄빅산계 형광특성이 크게 증가하였다. 포도당 시료에서는 배양 전 관찰되지 않았던 단백질계와 펄빅산계 형광특성이 관찰되었다. 중금속 구리와의 결합정도를 나타내는 log K 값은 미생물 배양 전과 후 휴믹물질 종류에 따라 변화가 없거나 혹은 약간 감소하는 경향을 나타냈다. 본 실험 결과는 미생물에 의한 휴믹물질 관련 형광구조의 증가가 중금속 결합력 강화에 영향을 미치지 않거나 오히려 감소시키는 것으로 보인다.

Keywords

References

  1. Thurman, E. M., "Organic Geochemistry of Natural Waters," Kluwer Academic, Boston, USA, pp. 497-498(1985).
  2. 허진, 신재기, 박성원, "하천 및 호소 수질관리를 위한 용존 자연유기물질 형광특성 분석," 대한환경공학회지, 28(9), 940-948(2006).
  3. Olsson, S., van Schaik, J. W. J., Gustafsson, J. P., Kleja, D. B., van Hees, and P. A. W., "Copper(II) binding to dissolved organic matter fractions in municipal solid waste incinerator bottom ash leachate," Environ. Sci. Technol., 41, 4286-4291(2007). https://doi.org/10.1021/es062954g
  4. 박민혜, 이보미, 이태환, 허진, 양희정, "생분해 과정 중 용존 유기물 특성 변화에 미치는 휴믹물질의 영향," 한국물환경학회지, 25(3), 419-424(2009).
  5. Hur, J., Park, M., and Schlautmanm, M. A., "Microbial transformation of dissolved leaf litter organic matter and its effects on selected organic matter operational descriptors," Environ. Sci. Technol., 37, 2743-2749(2009).
  6. Amery. F., Degryse F., Degeling W., Smolders E. and Merckx R., "The copper-mobilizing-potential of dissolved organic matter in soils varies 10-fold depending on soil incubation and extraction procedures," Environ. Sci. Technol., 41, 2277- 2281(2007). https://doi.org/10.1021/es062166r
  7. McKnight, D. M., Boyer, E. W., Westerhoff, P. K., Doran, P. T., Kulbe, T. and Andersen, D. T., "Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity," Limnol. Oceanogr., 46, 38-48(2001). https://doi.org/10.4319/lo.2001.46.1.0038
  8. Sara B. Schwede-Thomas, Yu-Oing Chin, Karl J. Dria, Patrick Hatcher, Edith Kaiser and Barbara Sulzberger, "Characterizing the properties of dissolved organic matter isolated by XAD and C-18 solid phase extraction and ultrafiltration," Aquat. Sci., 67, 61-71(2005). https://doi.org/10.1007/s00027-004-0735-4
  9. Chen, Z. Q., Hu, C. M., Comny, R. N., Muller-Karger, F. and Swarzenski, P., "Colored dissolved organic matter in Tampa Bay, Florida," Mar. Chem., 104(1-2), 98-109(2007). https://doi.org/10.1016/j.marchem.2006.12.007
  10. Baker, A., "Fluorescence excitation-emission matrix characterization of some sewage-impacted rivers," Environ. Sci. Technol., 35, 948-953(2001). https://doi.org/10.1021/es000177t
  11. Hur, J. and Schlautman, M. A., "Influence of Humic Substance Adsorptive Fractionation on Pyrene Partitioning to Dissolved and Mineral-Associated Humic Substances," Environ. Sci. Technol., 38, 5871-5877(2004). https://doi.org/10.1021/es049790t
  12. Ryan, D. K., and Weber, J. H., "Fluorescence quenching titration for determination of complexing capacities and stability constants of fulvic acid," Anal. Chim. Acta., 54, 986-990(1982). https://doi.org/10.1021/ac00243a033
  13. Plaza, C., Brunetti, G., Senesi, N. and Polo, A., "Molecular and quantitative analysis of metal ion binding to humic acids from sewage sludge and sludge-amended soils by fluorescence spectroscopy," Environ. Sci. Technol., 40, 917-923(2006). https://doi.org/10.1021/es051687w
  14. Rosenstock, B, Zwisler, W, and Simon, M., "Bacterial consumption of humic and non-humic low and high molecular weight DOM and the effect of solar irradiation on the turnover of labile DOM in the Southern Ocean," Microbiol. Ecol., 50, 90-101(2005). https://doi.org/10.1007/s00248-004-0116-5
  15. Kalbitz, K., Schmerwitz, J., Schwesig, D. and Matzner, E., "Biodegradation of soil-derived dissolved organic matter as related to its properties," Geoderma, 113, 273-291(2003). https://doi.org/10.1016/S0016-7061(02)00365-8
  16. Saadi, I., Borisovor, M., Armon, R., and Laor, Y., "Monitoring of effluent DOM biodegradation using fluorescence, UV, and DOC measurements," Chemosphere, 63, 530-539(2006). https://doi.org/10.1016/j.chemosphere.2005.07.075
  17. Hertkorn, N., Claus, H., Schmitt-Kopplin, PH., Perdue, E. M. and Filip, Z., "Utilization and transformation of aquatic humic substances by autochthonous microoganism," Environ. Sci. Technol., 36, 4334-4345(2002). https://doi.org/10.1021/es010336o
  18. Chen, J., LeBoeuf, E. J., Dai. S. and Gu. B., "Fluorescence spectroscopic studies of natural organic matter fractions," Chemosphere, 5, 639-647(2003).
  19. D. Scott Smith, James R. Kramer, "Multisite metal binding to fulvic acid determined using multiresponse fluorescence," Anal. Chim. Acta., 416, 211-220(2000). https://doi.org/10.1016/S0003-2670(00)00900-4
  20. Cheng-Fang Lin, Dar-Yuan Lee, Won-Tsai Chen, and Kevin S. Lo, "Fractionation of fulvic acids: characteristics and complexation with copper," Environ. Pollut., 87, 181-187(1995). https://doi.org/10.1016/0269-7491(94)P2605-9
  21. G. K. Brown, S. E. Cabaniss, P. Maccarthy, and J. A. Leenheer, "Cu(II) binding by a pH-factionated fulvic acid," Anal. Chim. Acta., 402, 183-193(1999). https://doi.org/10.1016/S0003-2670(99)00521-8
  22. Merritt, J. A. and Erich, M. S., "Influence of organic matter decomposition on soluble carbon and its copper-binding capacity," J. Environ. Qual., 32, 2122-2131(2003). https://doi.org/10.2134/jeq2003.2122
  23. Brooks, M. J., Meyer, J. S. and Mcknight, D. M., "Photooxidation of wetland and riverine dissolved organic matter: altered copper complexation and organic composition," Hydrobiol., 579, 95-113(2007). https://doi.org/10.1007/s10750-006-0387-6
  24. Knoth de Zarruk K., Scholer G., Dudal Y., "Fluorescence fingerprints and $Cu^{2+}$-complexing ability of individual molecular size fractions in soil- and waste-borne DOM," Chemosphere, 69, 540-548(2007). https://doi.org/10.1016/j.chemosphere.2007.03.039

Cited by

  1. Biodegradation of Dissolved Organic Matter Derived from Animal Carcass Disposal Soils Using Soil Inhabited Bacteria vol.35, pp.12, 2013, https://doi.org/10.4491/KSEE.2013.35.12.861