DOI QR코드

DOI QR Code

Instability Analysis of Counterflow Diffusion Flames with Radiation Heat Loss

복사 열손실을 받는 대향류 확산화염의 불안정성 해석

  • Lee, Su-Ryong (Dept. of Mechanical & Automotive Engineering, Seoul Nat'l Univ. of Technology)
  • 이수룡 (서울과학기술대학교 기계.자동차공학과)
  • Received : 2012.04.25
  • Accepted : 2012.05.18
  • Published : 2012.08.01

Abstract

A linear stability analysis of a diffusion flame with radiation heat loss is performed to identify linearly unstable conditions for the Damk$\ddot{o}$hler number and radiation intensity. We adopt a counterflow diffusion flame with unity Lewis number as a model. Near the kinetic limit extinction regime, the growth rates of disturbances always have real eigenvalues, and a neutral stability condition perfectly falls into the quasi-steady extinction. However, near the radiative limit extinction regime, the eigenvalues are complex, which implies pulsating instability. A stable limit cycle occurs when the temperatures of the pulsating flame exceed the maximum temperature of the steady-state flame with real positive eigenvalues. If the instantaneous temperature of the pulsating flame is below the maximum temperature, the flame cannot recover and goes to extinction. The neutral stability curve of the radiation-induced instability is plotted over a broad range of radiation intensities.

복사열손실을 받는 확산화염의 선형 안정성 해석을 수행하여 복사강도와 Damkohler 수에 대한 화염 불안정이 나타나는 조건을 확인하였다. 대향류 유동장을 모델로 하여 Lewis 수는 1로 가정하였다. 반응속도 제한에 의한 소염근처에서 교란의 증가율은 실수의 고유값을 가지며 안정한계는 정상상태 소염조건과 정확하게 일치한다. 반면에 복사 열손실에 의한 소염 영역 근처에서 증가율의 고유값은 복소수이며 정상상태 소염 전에 맥동 불안정성이 예측된다. 진동하는 화염온도가 양의 실수 고유값을 갖는 정상상태 화염온도 보다 클 경우에만 한계 순환 안정 특성이 나타난다. 만약 그 온도보다 작게 되면 화염은 회복되지 못하고 소염된다. 넓은 복사강도 범위에 대하여 복사 열손실에 의한 불안정성의 안정한계 곡선을 도시하였다.

Keywords

References

  1. Tien, J. S., 1986, "Diffusion Flame Extinction at Small Stretch Rates: The Mechanism of Radiative Loss" Combustion and Flame, Vol. 65, pp. 31-34. https://doi.org/10.1016/0010-2180(86)90069-6
  2. Kim, J. S. and Lee, S. R., 1999, "Diffusional-Thermal Instability in Strained Diffusion Flames with Unequal Lewis Numbers," Combustion Theory and Modelling 3-1, 123-146. https://doi.org/10.1088/1364-7830/3/1/007
  3. Kukuck, S. and Matalon, M., 2001, "The Onset of Oscillations in Diffusion Flames," Combustion Theory and Modelling, Vol. 5, pp. 217-240. https://doi.org/10.1088/1364-7830/5/2/306
  4. Sohn, C. H., Kim J. S., Chung, S. H. and Maruta, K., 2000, "Nonlinear Evolution of Diffusion Flame Oscillations Triggered by Radiative Heat Loss," Combustion and Flame, Vol. 123, pp. 95-106. https://doi.org/10.1016/S0010-2180(00)00148-6
  5. Miklavcic, M., Moore, A. B. and Wichman I. S., 2005, "Oscillations and Island Evolution in Radiating Diffusion Flames," Combustion Theory and Modelling Vol. 9, No. 3, pp. 403-416. https://doi.org/10.1080/13647830500293099
  6. Park, J. S., Hwang D. J., Park J., Kim J. S., Kim S, Keel S. I., Kim T. K., Noh D. S., 2006, "Edge Flame Instability in Low-Strain-Rate Counterflow Diffusion Flames," Combustion and Flame, Vol. 146, pp. 612-619. https://doi.org/10.1016/j.combustflame.2006.06.009
  7. Press, W. H., Teukolsky, S. A., Vetterling, W. T. and Flannery, B. P., 1992, Numerical Recipes, Cambridge University Press, New York, pp. 476-486.
  8. Wang, H. Y., Chen, W. H. and Law, C. K., 2007, "Extinction of Counterflow Diffusion Flames with Radiative Heat Loss and Nonunity Lewis Numbers," Combustion and Flame, Vol. 148, pp. 100-116. https://doi.org/10.1016/j.combustflame.2006.10.005
  9. Nanduria, J. R., Sung, C. J. and Tien, J. S., 2005, "Structure and Dynamic Response of Radiative Diffusion Flames," Combustion Theory and Modeling, Vol. 9, pp. 515-548. https://doi.org/10.1080/13647830500277373