DOI QR코드

DOI QR Code

난류 채널 유동 내부의 레이놀즈 전단 응력 분포

Reynolds Shear Stress Distribution in Turbulent Channel Flows

  • 김경연 (한밭대학교 기계공학과)
  • 투고 : 2012.02.29
  • 심사 : 2012.05.29
  • 발행 : 2012.08.01

초록

벽면 난류의 항력과 밀접한 관련이 있는 유동구조를 조사하기 위해 $Re_{\tau}$ = 180, 395, 590 의 난류채널유동에 대한 직접수치모사를 수행하였다. 확률밀도함수를 조사하여 레이놀즈 전단응력에 가장 큰 기여를 하는 Q2 이벤트를 파악하였으며 Q2 이벤트의 각도의 변화가 $y^+<50$ 에서는 벽 단위로 스케일링되며, y/h > 0.5 에서는 채널의 높이로 스케일링 됨을 확인하였다. Q2 이벤트를 조건으로 하는 조건부 평균 유동장을 조사하여 레이놀즈 전단응력의 발생과 관련이 있는 유동구조는 주 유동방향의 보텍스 및 헤어핀 형상의 보텍스임을 보였다. 또한, 순간 유동장을 관찰하여 높은 레이놀즈 전단 응력의 분포가 이러한 보텍스 구조와 관련이 있으며 1.5 ~ 3h 의 크기를 갖는 대형유동구조를 구성함을 확인하였다.

Direct numerical simulations were carried out for turbulent channel flows with $Re_{\tau}$ = 180, 395 and 590 to investigate the turbulent flow structure related to the Reynolds shear stress. By examining the probability density function, the second quadrant (Q2) events with the largest contribution to the mean Reynolds shear stress were identified. The change in the inclination angle of Q2 events varies with wall units in $y^+<50$ and with the channel half height in y/h > 0.5. Conditionally averaged flow fields for the Q2 event show that the flow structures associated with Reynolds shear stress are a quasi-streamwise vortex in the buffer layer and a hairpin-shaped vortex in the outer layer. Three-dimensional visualization of the distribution of high Reynolds shear stress reveals that the organization of hairpin vortices in the outer layer having a size of 1.5~3 h is associated with large-scale motions with high Reynolds shear stress in the outer layer.

키워드

참고문헌

  1. Adrian, R.J., 2007, "Hairpin Vortex Organization in Wall Turbulence," Phys. Fluids, Vol. 19, pp. 041301. https://doi.org/10.1063/1.2717527
  2. Robinson, S.K., 1991, "Coherent Motions in the Turbulent Boundary Layer," Ann. Rev. Fluid Mech., Vol. 23, No. 1, pp. 601-639. https://doi.org/10.1146/annurev.fl.23.010191.003125
  3. Choi, H., Moin, P. and Kim, J., 1994, "Active Turbulence Control for Drag Reduction in Wall-Bounded Flows," J. Fluid Mech., Vol. 262, pp. 75-75. https://doi.org/10.1017/S0022112094000431
  4. Chung, Y.M. and Talha, T., 2011, "Effectiveness of Active Flow Control for Turbulent Skin Friction Drag Reduction," Phys. Fluids, Vol. 23, No. 2, pp. 025102-10. https://doi.org/10.1063/1.3553278
  5. Hammond, E.P., Bewley, T.R. and Moin, P., 1998, "Observed Mechanisms for Turbulence Attenuation and Enhancement in Opposition-Controlled Wall-Bounded Flows," Phys. Fluids, Vol. 10, pp. 2421. https://doi.org/10.1063/1.869759
  6. Pamies, M., Garnier, E., Merlen, A. and Sagaut, P., 2007, "Response of a Spatially Developing Turbulent Boundary Layer to Active Control Strategies in the Framework of Opposition Control," Phys. Fluids, Vol. 19, pp. 108102. https://doi.org/10.1063/1.2771659
  7. Chang, Y., Collis, S.S. and Ramakrishnan, S., 2002, "Viscous Effects in Control of Near-Wall Turbulence," Phys. Fluids, Vol. 14, p. 4069. https://doi.org/10.1063/1.1509751
  8. Iwamoto, K., Suzuki, Y. and Kasagi, N., 2002, "Reynolds Number Effect on Wall Turbulence: Toward Effective Feedback Control," Int. J. Heat Fluid Fl., Vol. 23, No. 5, pp. 678-689. https://doi.org/10.1016/S0142-727X(02)00164-9
  9. Adrian, R.J., Meinhart, C.D. and Tomkins, C.D., 2000, "Vortex Organization in the Outer Region of the Turbulent Boundary Layer," J. Fluid Mech., Vol. 422, pp. 1-54. https://doi.org/10.1017/S0022112000001580
  10. Ganapathisubramani, B., 2008, "Statistical Structure of Momentum Sources and Sinks in the Outer Region of a Turbulent Boundary Layer," J. Fluid Mech., Vol. 606, No. -1, pp. 225-237.
  11. Ganapathisubramani, B., Longmire, E.K. and Marusic, I., 2003, "Characteristics of Vortex Packets in Turbulent Boundary Layers," J. Fluid Mech., Vol. 478, pp. 35-46.
  12. Jimenez, J., 2012, "Cascades in Wall-Bounded Turbulence," Ann. Rev. Fluid Mech., Vol. 44, pp. 27-45. https://doi.org/10.1146/annurev-fluid-120710-101039
  13. Wu, Y. and Christensen, K.T., 2006, "Population Trends of Spanwise Vortices in Wall Turbulence," J. Fluid Mech., Vol. 568, No. 1, pp. 55-76. https://doi.org/10.1017/S002211200600259X
  14. Guala, M., Hommema, S. and Adrian, R., 2006, "Large-Scale and Very-Large-Scale Motions in Turbulent Pipe Flow," J. Fluid Mech., Vol. 554, No. 1, pp. 521-542. https://doi.org/10.1017/S0022112006008871
  15. Hoyas, S. and Jimenez, J., 2006, "Scaling of the Velocity Fluctuations in Turbulent Channels up to Re= 2003," Phys. Fluids, Vol. 18, pp. 011702. https://doi.org/10.1063/1.2162185
  16. Kim, K., Sung, H.J. and Adrian, R.J., 2008, "Effects of Background Noise on Generating Coherent Packets of Hairpin Vortices," Phys. Fluids, Vol. 20, pp. 105107. https://doi.org/10.1063/1.3001797
  17. Moser, R.D., Kim, J. and Mansour, N.N., 1999, "Direct Numerical Simulation of Turbulent Channel Flow up to Ret= 590," Phys. Fluids, Vol. 11, p. 943. https://doi.org/10.1063/1.869966
  18. Kim, J., Moin, P. and Moser, R., 1987, "Turbulence Statistics in Fully Developed Channel Flow at Low Reynolds Number," J. Fluid Mech., Vol. 177, pp. 133-166. https://doi.org/10.1017/S0022112087000892
  19. Adrian, R.J., 1994, "Stochastic Estimation of Conditional Structure: a Review," Applied Scientific Research, Vol. 53, No. 3, pp. 291-303. https://doi.org/10.1007/BF00849106
  20. Adrian, R.J., 1979, "Conditional Eddies in Isotropic Turbulence," Phys. Fluids, Vol. 22, pp. 2065. https://doi.org/10.1063/1.862515
  21. Chakraborty, P., Balachandar, S. and Adrian, R.J., 2005, "On the Relationships Between Local Vortex Identification Schemes," J. Fluid Mech., Vol. 535, pp. 189-214. https://doi.org/10.1017/S0022112005004726
  22. Christensen, K.T. and Adrian, R.J., 2001, "Statistical Evidence of Hairpin Vortex Packets in Wall Turbulence," J. Fluid Mech., Vol. 431, pp. 433-443. https://doi.org/10.1017/S0022112001003512
  23. Ganapathisubramani, B., Hutchins, N., Hambleton, W.T., Longmire, E.K. and Marusic, I., 2005, "Investigation of Large-Scale Coherence in a Turbulent Boundary Layer Using Two-Point Correlations," J. Fluid Mech., Vol. 524, pp. 57-80. https://doi.org/10.1017/S0022112004002277