DOI QR코드

DOI QR Code

Evaluation of Thermal Fatigue Lifetimes of Cast Iron Brake Disc Materials

제동 디스크용 주철의 물성 및 열피로 특성평가

  • 구병춘 (한국철도기술연구원 신교통연구본부) ;
  • 임충환 (STX 메탈주식회사 기술연구소)
  • Received : 2011.06.01
  • Accepted : 2012.05.21
  • Published : 2012.08.01

Abstract

We measured the mechanical and thermal properties of four types of cast irons used for manufacturing the brake discs of railway vehicles. It was found that these properties could be controlled by varying the composition of Ni, Cr, and Mo. Thermal fatigue tests were carried out by using a thermal fatigue tester in which thermal cycles could be controlled. Thermal crack initiation and propagation were measured on cylindrical specimens. Finally, we simulated the thermal fatigue test procedure by finite element analysis and calculated the thermal fatigue lifetimes by Manson-Coffin's equation and the maximum principal strain. The estimated thermal fatigue lifetimes corresponded to the measured lifetimes when the total crack length was $40{\mu}m{\sim}1mm$.

철도차량의 제동 디스크에 사용될 수 있는 주물재료 4 종에 대해 인장강도, 압축강도, 경도, 비열, 비중, 열전도도 등 여러 특성값을 측정하였다. Ni, Cr, Mo 의 조성비에 따라 인장강도, 압축강도, 경도 등을 조절할 수 있었다. 이들 재료에 대해 열피로 시험을 수행할 수 있는 장치를 사용하여 원통형 시편에 대해 열크랙의 발생과 길이를 측정하여 재료의 내열성을 평가하였다. 그리고 열피로 시험과정을 유한요소법으로 해석하고 Manson-Coffin 식과 주변형률을 이용하여 열피로수명을 평가하여 시험결과와 비교, 검토하였다. 해석에 의한 예측수명은 관찰영역의 균열의 총 길이가 $40{\mu}m{\sim}1mm$ 사이에 있을 때의 수명에 해당함을 알 수 있다.

Keywords

References

  1. Mackin, T. J., Steven C. N., Ball, B. C., et al., 2002, "Thermal Cracking in Disc Brakes," Engineering Failure Analysis, vol. 9, pp. 63-76. https://doi.org/10.1016/S1350-6307(00)00037-6
  2. Yamabe, J., Takagi, M., Matsui, T., Kimura T. and Sasaki, M., 2002, "Development of Disc Brake Rotors for Trucks with High Thermal Fatigue Strength," JSAE Review, Vol. 23, pp. 105-112. https://doi.org/10.1016/S0389-4304(01)00153-9
  3. Sakamoto, H. and Hirakawa, K., 2005, "Fracture Analysis and Material Improvement of Brake Discs," JSME International Journal, Series A, Vol. 48, No. 4, pp. 458-464. https://doi.org/10.1299/jsmea.48.458
  4. Fissolo, A., Marini, B., Nais, G. and Wident, P., 1996, "Thermal Fatigue Behaviour for a 316L Type Steel," Journal of Nuclear Materials, Vol. 233-237, pp. 156-161. https://doi.org/10.1016/S0022-3115(96)00122-5
  5. Lim, C. H. and Goo, B. C., 2011 "Development of Compacted Graphite Cast Iron for Railway Brake Discs," Metals and Materials International, Vol. 17, No. 2, pp. 199-205. https://doi.org/10.1007/s12540-011-0403-x
  6. Lee, H. Y., Kim, J. B. and Lee. J. H, 2002 "Test and Analysis of Thermal Ratcheting Deformation for 316L Stainless Steel Cylindrical Structure," Trans. Of the KSME A, Vol. 26, 479-486, pp. 479-486. https://doi.org/10.3795/KSME-A.2002.26.3.479
  7. Bannantine, J. A., Comer, J. J. and Handrock, J. L., 1990, Fundamentals of Metal Fatigue Analysis, Prentice Hall.
  8. American Society of Mechanical Engineers, 1977, Cases of the ASME Boiler and Pressure Vessel Code, Case N-47-12 (1592-2), ASME, New York.