References
- V.M. Alekseev: An estimate for the perturbations of the solutions of ordinary differential equations. Vestn. Mosk. Univ. Ser. I. Math. Mech. 2 (1961), 28-36.
- S.K. Choi, K.S. Koo & K.H. Lee: Lipschitz stability and exponential asymptotic stability in perturbed systems. J. Korean Math. Soc. 29 (1992), 175-190.
- S.K. Choi & H.S. Ryu: h-stability in differential systems. Bull. Inst. Math. Acad. Sinica 21 (1993), 245-262.
-
S.K. Choi, N.J. Koo & H.S. Ryu: h-stability of differential systems via
$t_{\infty}$ -similarity. Bull. Korean. Math. Soc. 34 (1997), 371-383. -
R. Conti: Sulla
$t_{\infty}$ -similitudine tra matricie l'equivalenza asintotica dei sistemi differenziali lineari. Rivista di Mat. Univ. Parma 8 (1957), 43-47. -
Y.H. Goo: h-stability of the nonlinear differential systems via
$t_{\infty}$ -similarity. J. Chungcheong Math. Soc. 23 (2010), 383-389. - Y.H. Goo & D.H. Ry: h-stability of the nonlinear perturbed differential systems. J. Chungcheong Math. Soc. 23 (2010), 827-834.
-
Y.H. Goo & S.B. Yang: h-stability of the nonlinear perturbed differential systems via
$t_{\infty}$ -similarity. J. Chungcheong Math. Soc. 24 (2011), 695-702. - Y.H. Goo: h-stability of perturbed differential systems. J. Korean Soc. Math. Edu. Ser. B: Pure Appl. Math. 18 (2011), 337-344.
-
G.A. Hewer: Stability properties of the equation by
$t_{\infty}$ -similarity. J. Math. Anal. Appl. 41 (1973), 336-344. https://doi.org/10.1016/0022-247X(73)90209-6 - V. Lakshmikantham & S. Leela: Differential and Integral Inequalities: Theory and Applications Vol. I. Academic Press, New York and London, 1969.
- B.G. Pachpatte: A note on Gronwall-Bellman inequality. J. Math. Anal. Appl. 44 (1973), 758-762. https://doi.org/10.1016/0022-247X(73)90014-0
- M. Pinto: Perturbations of asymptotically stable differential systems. Analysis 4 (1984), 161-175.
- M. Pinto: Asymptotic integration of a system resulting from the perturbation of an h-system. J. Math. Anal. Appl. 131 (1988), 194-216. https://doi.org/10.1016/0022-247X(88)90200-4
- M. Pinto: Stability of nonlinear differential systems. Applicable Analysis 43 (1992), 1-20. https://doi.org/10.1080/00036819208840049
Cited by
- UNIFORM LIPSCHITZ AND ASYMPTOTIC STABILITY FOR PERTURBED DIFFERENTIAL SYSTEMS vol.26, pp.4, 2013, https://doi.org/10.14403/jcms.2013.26.4.831
- BOUNDEDNESS IN THE PERTURBED DIFFERENTIAL SYSTEMS vol.20, pp.3, 2012, https://doi.org/10.7468/jksmeb.2013.20.3.223
- LIPSCHITZ AND ASYMPTOTIC STABILITY FOR PERTURBED NONLINEAR DIFFERENTIAL SYSTEMS vol.21, pp.1, 2014, https://doi.org/10.7468/jksmeb.2014.21.1.11
- LIPSCHITZ AND ASYMPTOTIC STABILITY FOR PERTURBED NONLINEAR DIFFERENTIAL SYSTEMS vol.21, pp.1, 2014, https://doi.org/10.7468/jksmeb.2014.21.1.11