DOI QR코드

DOI QR Code

h-STABILITY OF NONLINEAR PERTURBED DIFFERENTIAL SYSTEMS VIA t-SIMILARITY

  • Received : 2012.04.04
  • Accepted : 2012.05.19
  • Published : 2012.05.31

Abstract

The main purpose of this paper is to investigate $h$-stability of the nonlinear perturbed differential systems using the notion of $t_{\infty}$-similarity. As results, we generalize some previous $h$-stability results on this topic.

Keywords

References

  1. V.M. Alekseev: An estimate for the perturbations of the solutions of ordinary differential equations. Vestn. Mosk. Univ. Ser. I. Math. Mech. 2 (1961), 28-36.
  2. S.K. Choi, K.S. Koo & K.H. Lee: Lipschitz stability and exponential asymptotic stability in perturbed systems. J. Korean Math. Soc. 29 (1992), 175-190.
  3. S.K. Choi & H.S. Ryu: h-stability in differential systems. Bull. Inst. Math. Acad. Sinica 21 (1993), 245-262.
  4. S.K. Choi, N.J. Koo & H.S. Ryu: h-stability of differential systems via $t_{\infty}$-similarity. Bull. Korean. Math. Soc. 34 (1997), 371-383.
  5. R. Conti: Sulla $t_{\infty}$-similitudine tra matricie l'equivalenza asintotica dei sistemi differenziali lineari. Rivista di Mat. Univ. Parma 8 (1957), 43-47.
  6. Y.H. Goo: h-stability of the nonlinear differential systems via $t_{\infty}$-similarity. J. Chungcheong Math. Soc. 23 (2010), 383-389.
  7. Y.H. Goo & D.H. Ry: h-stability of the nonlinear perturbed differential systems. J. Chungcheong Math. Soc. 23 (2010), 827-834.
  8. Y.H. Goo & S.B. Yang: h-stability of the nonlinear perturbed differential systems via $t_{\infty}$-similarity. J. Chungcheong Math. Soc. 24 (2011), 695-702.
  9. Y.H. Goo: h-stability of perturbed differential systems. J. Korean Soc. Math. Edu. Ser. B: Pure Appl. Math. 18 (2011), 337-344.
  10. G.A. Hewer: Stability properties of the equation by $t_{\infty}$-similarity. J. Math. Anal. Appl. 41 (1973), 336-344. https://doi.org/10.1016/0022-247X(73)90209-6
  11. V. Lakshmikantham & S. Leela: Differential and Integral Inequalities: Theory and Applications Vol. I. Academic Press, New York and London, 1969.
  12. B.G. Pachpatte: A note on Gronwall-Bellman inequality. J. Math. Anal. Appl. 44 (1973), 758-762. https://doi.org/10.1016/0022-247X(73)90014-0
  13. M. Pinto: Perturbations of asymptotically stable differential systems. Analysis 4 (1984), 161-175.
  14. M. Pinto: Asymptotic integration of a system resulting from the perturbation of an h-system. J. Math. Anal. Appl. 131 (1988), 194-216. https://doi.org/10.1016/0022-247X(88)90200-4
  15. M. Pinto: Stability of nonlinear differential systems. Applicable Analysis 43 (1992), 1-20. https://doi.org/10.1080/00036819208840049

Cited by

  1. UNIFORM LIPSCHITZ AND ASYMPTOTIC STABILITY FOR PERTURBED DIFFERENTIAL SYSTEMS vol.26, pp.4, 2013, https://doi.org/10.14403/jcms.2013.26.4.831
  2. BOUNDEDNESS IN THE PERTURBED DIFFERENTIAL SYSTEMS vol.20, pp.3, 2012, https://doi.org/10.7468/jksmeb.2013.20.3.223
  3. LIPSCHITZ AND ASYMPTOTIC STABILITY FOR PERTURBED NONLINEAR DIFFERENTIAL SYSTEMS vol.21, pp.1, 2014, https://doi.org/10.7468/jksmeb.2014.21.1.11
  4. LIPSCHITZ AND ASYMPTOTIC STABILITY FOR PERTURBED NONLINEAR DIFFERENTIAL SYSTEMS vol.21, pp.1, 2014, https://doi.org/10.7468/jksmeb.2014.21.1.11