DOI QR코드

DOI QR Code

Begomoviruses and Their Emerging Threats in South Korea: A Review

  • Khan, Mohammad Sajid (Department of Molecular Biotechnology, Konkuk University) ;
  • Ji, Sang-He (Department of Molecular Biotechnology, Konkuk University) ;
  • Chun, Se-Chul (Department of Molecular Biotechnology, Konkuk University)
  • Received : 2011.11.19
  • Accepted : 2012.04.10
  • Published : 2012.06.01

Abstract

Diseases caused by begomoviruses (family Geminiviridae, genus Begomovirus) constitute a serious constraint to tropical and sub-tropical agro-ecosystems worldwide. In recent years, they have also introduced in temperate regions of the world where they have great impact and are posing a serious threat to a variety of greenhouse crops. Begomoviral diseases can in extreme cases reduce yields to zero leading to catastrophic losses in agriculture. They are still evolving and pose a serious threat to sustainable agriculture across the world, particularly in tropics and sub-tropics. Till recently, there have been no records on the occurrence of begomoviral disease in South Korea, however, the etiology of other plant viral diseases are known since last century. The first begomovirus infected sample was collected from sweet potato plant in 2003 and since then there has been gradual increase in the begomoviral epidemics specially in tomato and sweet potato crops. So far, 48 begomovirus sequences originating from various plant species have been submitted in public sequence data base from different parts of the country. The rapid emergence of begomoviral epidemics might be with some of the factors like evolution of new variants of the viruses, appearance of efficient vectors, changing cropping systems, introduction of susceptible plant varieties, increase in global trade in agricultural products, intercontinental transportation networks, and changes in global climatic conditions. Another concern might be the emergence of a begomovirus complex and satellite DNA molecules. Thorough understanding of the pathosystems is needed for the designing of effective managements. Efforts should also be made towards the integration of the resistant genes for the development of transgenic plants specially tomato and sweet potato as they have been found to be widely infected in South Korea. There should be efficient surveillance for emergence or incursions of other begomoviruses and biotypes of whitefly. This review discusses the general characteristics of begomoviruses, transmission by their vector B. tabaci with an especial emphasis on the occurrence and distribution of begomoviruses in South Korea, and control measures that must be addressed in order to develop more sustainable management strategies.

Keywords

References

  1. Abhary, M. K., Anfoka, G. H., Nakhla, M. K. and Maxwell, D. P. 2006. Post-transcriptional gene silencing in controlling viruses of the Tomato yellow leaf curl virus complex. Arch. Virol. 151: 2349-2363. https://doi.org/10.1007/s00705-006-0819-7
  2. Ambrozevicius, L. P., Calegario, R. F., Fontes, E. P. B., Carvalho, M. G. and Zerbini, F. M. 2002. Genetic diversity of begomovirus infecting tomato and associated weeds in southeastern Brazil. Fitopatol. Bras. 27:372-377. https://doi.org/10.1590/S0100-41582002000400006
  3. Anonymous, 2001. Crop Protection Compendium, Global Module, 3rd edn. CAB International CD-Rom Database.
  4. Arguello-Astorga, G., Herrera-Estrella, L. and Rivera-Bustamante, R. F. 1994. Experimental and theoretical definition of geminivirus origin of replication. Plant Mol. Biol. 26:553-556. https://doi.org/10.1007/BF00013742
  5. Banks, G. K., Colvin, J., Chowda Reddy, R. V., Maruthi, M. N., Muniyappa, V., Venkatesh, H. M., Kiran Kumar, M., Padmaja, A. S., Beitia, F. J. and Seal, S. 2001. First report of the Bemisia tabaci B biotype in India and an associated Tomato leaf curl virus disease epidemic. Plant Dis. 85:231.
  6. Barnabas, A. D., Radhakrishnan, G. K. and Ramakrishnan, U. 2010. Characterization of a begomovirus causing horsegram yellow mosaic disease in India. Eur. J. Plant Pathol. 127:41-51. https://doi.org/10.1007/s10658-009-9569-1
  7. Bedford, I. D., Kelly, A., Banks, G. K., Briddon, R. W., Cenis, J. L. and Markham, P. G. 1998. Solanium nigrum: an indigenous weed reservoir for a tomato yellow leaf curl geminivirus in southern Spain. Eur. J. Plant Pathol. 104:221-222. https://doi.org/10.1023/A:1008627419450
  8. Bellows, T. S. Jr., Perring, T. M., Gill, R. J. and Headrick, D. H. 1994. Description of a species of Bemisia (Homoptera: Aleyrodidae). Ann. Entomol. Soc. Am. 87:195-206. https://doi.org/10.1093/aesa/87.2.195
  9. Bisaro, D. M., Hamilton, W. D., Coutts, R. H. and Buck, K. W. 1982. Molecular cloning and characterization of the two DNA components of tomato golden mosaic virus. Nucleic Acids Res. 10:4913-4922. https://doi.org/10.1093/nar/10.16.4913
  10. Blair, M. W., Bassett, M. J., Abouzid, A. M., Hiebert, E., Polston, J. E., McMillan, R. T. Jr., Graves, W. and Lamberts, M. 1995. Occurrence of bean golden mosaic virus in Florida. Plant Dis. 79:529-533. https://doi.org/10.1094/PD-79-0529
  11. Blawid, R., Van, D. T. and Maiss, E. 2008. Transreplication of a Tomato yellow leaf curl Thailand virus DNA-B and replication of a DNA-$\beta$ component by Tomato leaf curl Vietnam virus and Tomato yellow leaf curl Vietnam virus. Virus Res. 136:107-117. https://doi.org/10.1016/j.virusres.2008.04.025
  12. Briddon, R. W. and Stanley, J. 2006. Subviral agents associated with plant single-stranded DNA viruses. Virology 344:198-210. https://doi.org/10.1016/j.virol.2005.09.042
  13. Briddon, R. W., Bedford, I. D., Tsai, J. H. and Markham, P. G. 1996. Analysis of the nucleotide sequence of the treehopper-transmitted geminivirus, tomato pseudo-curly top virus, suggests a recombinant origin. Virology 219:387-394. https://doi.org/10.1006/viro.1996.0264
  14. Briddon, R. W., Bull, S. E., Amin, I., Idris, A. M., Mansoor, S., Bedford, I. D., Dhawan, P., Rishi, N., Siwatch, S. A., Mansoor, S., Abdel-Salam, A. M., Brown, J. K., Zafar, Y. and Markham, P. G. 2003. Diversity of DNA $\beta$: a satellite molecule associated with some monopartite begomovirus. Virology 312:106-121. https://doi.org/10.1016/S0042-6822(03)00200-9
  15. Briddon, R. W., Mansoor, S., Bedford, I. D., Pinner, M. S., Saunders, K., Stanley, J., Zafar, Y., Malik, K. A. and Markham, P. G. 2001. Identification of DNA components required for induction of cotton leaf curl disease. Virology 285:234-243. https://doi.org/10.1006/viro.2001.0949
  16. Briddon, R. W. and Markham, P. G. 2001. Complementation of bipartite begomovirus movement functions by topocuviruses and curtoviruses. Arch. Virol. 146:1811-1819. https://doi.org/10.1007/s007050170067
  17. Briddon, R. W., Patil, B. L., Bagewadi, B., Shah Nawaz-ul-Rehman, M. and Fauquet, C. M. 2010. Distinct evolutionary histories of the DNA-A and DNA-B components of bipartite begomoviruses. BMC Evol. Biol. 10:97. https://doi.org/10.1186/1471-2148-10-97
  18. Brown, J. K. and Idris, A. M. 2008. Introduction of the exotic monopartite Tomato yellow leaf curl virus into west coast Mexico. Plant Dis. 90:1360.
  19. Brown, J. K., Caballero, R., Rogan, D. and Bird, J. 2001. Evidence for Bemisia tabaci species complex: mitochondria cytochrome oxidase I gene complex sequence analysis confirms one group comprising all B. tabaci, and mating between AZA, AZB and Jatropha biotypes corroborate a single biological species. In: Proceedings, European Whitefly Symposium, 27 February to 3 March 2001, Ragusa, Sicily, Italy. European Whitefly Studies Network, Norwich, United Kingdom. 23 pp.
  20. Brown, J. K., Frohlich, D. R. and Rossell, R. C. 1995. The sweetpotato of silver leaf whiteflies: biotypes of Bemisia tabaci or a species complex? Ann. Entomol. 40:511-534. https://doi.org/10.1146/annurev.en.40.010195.002455
  21. Bull, S. E., Briddon, R. W., Sserubombwe, W. S., Ngugi, K., Markham, P. G. and Stanley, J. 2007. Infectivity, pseudorecombination and mutagenesis of Kenyan cassava mosaic begomoviruses. J. Gen. Virol. 88:1624-1633. https://doi.org/10.1099/vir.0.82662-0
  22. Bull, S. E., Tsai, W. S., Briddon, R. W., Markham, P. G., Stanley, J. and Green, S. K. 2004. Diversity of begomovirus DNA $\beta$ satellites of non-malvaceous plants in east and south east Asia. Arch. Virol. 149:1193-1200. https://doi.org/10.1007/s00705-003-0282-7
  23. Carvalho, M. F. and Lazarowitz, S. G. 2004. Interaction of the Movement protein NSP and the Arabidopsis acetyltransferase AtNSI is Necessary for cabbage leaf curl geminivirus infection and pathogenicity. J. Virol. 78: 11161-11171. https://doi.org/10.1128/JVI.78.20.11161-11171.2004
  24. Castillo-Urquiza, G. P., Beserra, J. E. A., Bruckner, F. P., Lima, A. T. M., Varsani, A., Alfenas-Zerbini, P. and Zerbini, F. M. 2008. Six novel begomoviruses infecting tomato and associated weeds in Southeastern Brazil. Arch. Virol. 153:1985-1989. https://doi.org/10.1007/s00705-008-0172-0
  25. Chatterji, A., Padidam, M., Beachy, R. M. and Fauquet, C. M. 1999. Identification of replication specificity determinants in two strains of tomato leaf curl from New Dheli. J. Virol. 73:5481-5489.
  26. Chellappan, P., Masona, M. V., Vanitharani, R., Taylor, N. J. and Fauquet, C. M. 2004. Broad spectrum resistance to ssDNA viruses associated with transgene-induced gene silencing in cassava. Plant Mol. Biol. 56:601-611. https://doi.org/10.1007/s11103-004-0147-9
  27. Czosnek, H. and Laterrot, H. 1997. A worldwide survey of tomato yellow leaf curl viruses. Arch. Virol. 142:1391-1406. https://doi.org/10.1007/s007050050168
  28. Dalmon, A. and Marchoux, G. 2000. Quelles plantes hôtes pour le tomato yellow leaf curl virus? Phytoma 527:14-17.
  29. Davino, S., Napoli, C., Davino, M. and Accotto, G. P. 2006. Spread of Tomato yellow leaf curl virus in Sicily: Partial displacement of another Geminivirus originally present. Eur J. Plant Pathol. 114:293-299. https://doi.org/10.1007/s10658-005-5805-5
  30. De Barro, P. J., Hidayat, S. H., Frohlich, D., Subandiyah, S. and Ueda, S. 2008. A virus and its vector, pepper yellow leaf curl virus and Bemisia tabaci, two new invaders of Indonesia. Biol. Invasions 10:411-433. https://doi.org/10.1007/s10530-007-9141-x
  31. De Barro, P. J., Liu, S.-S., Boykin, L. M. and Dinsdale, A. B. 2011. Bemisia tabaci: A statement of species status. Ann. Revi. Entomol. 56:1-19. https://doi.org/10.1146/annurev-ento-112408-085504
  32. De Barro, P. J., Driver, F., Trueman, J. W. and Curran, J. 2000. Phylogenetic relationships of world populations of Bemisia tabaci (Gennadius) using ribosomal ITS1. Mol. Phylogenet. Evol. 16:29-36. https://doi.org/10.1006/mpev.1999.0768
  33. Delatte, H., Holota, H., Moury, B., Reynaud, B., Lett, J.-M. and Peterschmitt, M. 2007. Evidence for a founder effect after introduction of Tomato Yellow Leaf Curl Virus -Mild in an insular environment. J. Mol. Evol. 65:112-118. https://doi.org/10.1007/s00239-007-0005-x
  34. Delatte, H., Martin, D. P., Naze, F., Goldbach, R., Reynaud, B., Peterschmitt, M. and Lett, J. M. 2005. South West Indian Ocean islands tomato begomovirus populations represent a new major monopartite begomovirus group. J. Gen. Virol. 86:1533-1542. https://doi.org/10.1099/vir.0.80805-0
  35. Demichelis, S., Arno, C., Bosco, D., Marian, D. and Caciagli, P. 2005. Characterization of Biotype T of Bemisia tabaci associated with Euphorbia characias in Sicily. Phytoparasitica 33: 196-208. https://doi.org/10.1007/BF03029979
  36. Drayton, G. M., Teulon, D. A. J., Workman, P. J. and Scott, I. A. W. 2009. The Christmas dispersal of Bemisia tabaci (Gennadius) in New Zealand. N. Z. Plant Prot. 62:310-314.
  37. Duan, Y. P., Powell, C. A., Webb, S. E., Purcifull, D. E. and Hiebert, E. 1997. Geminivirus resistance in transgenic tobacco expressing mutated BC1 protein. Mol. Plant-Microbe Interact. 10:610-623.
  38. Duffy, S. and Holmes, E. C. 2007. Multiple introductions of the Old World begomovirus tomato yellow leaf curl virus into the New World. Appl. Environ. Microbiol. 73:7114-7117. https://doi.org/10.1128/AEM.01150-07
  39. Fauquet, C. M., Briddon, R. W., Brown, J. K., Moriones, E., Stanley, J., Zerbini M. and Zhou, X. 2008. Geminivirus strain demarcation and nomenclature. Arch. Virol. 153:783-821. https://doi.org/10.1007/s00705-008-0037-6
  40. Fazeli, R., Heydarnejad, J., Massumi, H., Shaabanian, M. and Varsani, A. 2009. Genetic diversity and distribution of tomatoinfecting begomoviruses in Iran. Virus Genes 38:311-319. https://doi.org/10.1007/s11262-008-0310-5
  41. Gafni, Y. and Epel, B. L. 2002. The role of host and viral proteins in intra- and inter-cellular trafficking of geminiviruses. Physiol. Mol. Plant Pathol. 60:231-241. https://doi.org/10.1006/pmpp.2002.0402
  42. Galvao, R. M., Mariano, A. C., Luz, D. F., Alfenas, P. F., Andrade, E. C., Zerbini, F. M., Almeida, M. R. and Fontes, E. P. B. 2003. A naturally occurring recombinant DNA-A of a typical bipartite begomovirus does not require the cognate DNA-B to infect Nicotiana benthamiana systemically. J. Gen. Virol. 84:715-726. https://doi.org/10.1099/vir.0.18783-0
  43. Garcia-Andres, S., Monci, F., Navas-Castillo, J. and Moriones, E. 2006. Begomovirus genetic diversity in the native plant reservoir Solanum nigrum: evidence for the presence of a new virus species of recombinant nature. Virology 350:433-442. https://doi.org/10.1016/j.virol.2006.02.028
  44. Gilbertson, R. L., Rojas, M. R., Kon, T. and Jaquez, J. 2007. Introduction of Tomato yellow leaf curl virus into the Dominican Republic: the development of a successful integrated pest management strategy. In: Tomato Yellow Leaf Curl Virus Disease, ed. by H. Czosnek, pp. 279-303. Springer-Verlag, The Netherlands.
  45. Graham, A. P., Martin, D. P. and Roye, M. E. 2010. Molecular characterization and phylogeny of two begomoviruses infecting Malvastrum americanum in Jamaica: evidence of the contribution of inter-species recombination to the evolution of malvaceous weed-associated begomoviruses from the Northern Caribbean. Virus Genes 40:256-266. https://doi.org/10.1007/s11262-009-0430-6
  46. Green, S. K., Tsai, W. S., Shih, S. L., Black, L. L., Rezaian, A., Rashid, M. H., Roff, M. M. N., Myint, Y. Y. and Hong, L. T. A. 2001. Molecular characterization of begomoviruses associated with leaf curl disease in Bangladesh, Laos, Malaysia, Myanmar, and Vietnam. Plant Dis. 85:1286.
  47. Guo, W., Yang, X., Xie, Y., Cui, X. and Zhou, X. 2009. Tomato yellow leaf curl Thailand virus-[Y72] from Yunnan is a monopartite begomovirus associated with DNA$\beta$. Virus Genes 38:328-333. https://doi.org/10.1007/s11262-009-0327-4
  48. Ha, C., Coombs, S., Revill, P., Harding, R., Vu, M. and Dale, J. 2006. Corchorus yellow vein virus, a New World geminivirus from the Old World. J. Gen. Virol. 87:997-1003. https://doi.org/10.1099/vir.0.81631-0
  49. Haider, M. S., Tahir, M., Latif, S. and Briddon, R. W. 2006. First report of Tomato leaf curl New Delhi virus infecting Eclipta prostrata in Pakistan. Plant Pathol. 55:285.
  50. Hamilton, W. D. O., Sanders, R. C., Coutts, R. H. A. and Buck, K. W. 1983. Demonstration of the bipartite nature of the genome of a single stranded DNA plant virus by infection with the cloned DNA components. Nucleic. Acids Res. 11:7387-7396. https://doi.org/10.1093/nar/11.21.7387
  51. Hang, J. F. and Zhou, X. P. 2006. First report of Papaya leaf curl China virus infecting Corchoropsis timentosa in China. Plant Pathol. 55:291.
  52. Hanley-Bowdoin, L., Elmer, S. J. and Rogers, S. G. 1989. Functional expression of the leftward open readingframes of the A component of tomato golden mosaic virus intransgenic tobacco plants. J. Gen. Virol. 69:891-896.
  53. Hanley-Bowdoin, L., Settlage, S. B., Orozco, B. M., Nagar, S. and Robertson, D. 1999. Geminiviruses: models for plant DNA replication, transcription, and cell cycle regulation. Crit. Rev. Plant Sci. 18:71-106. https://doi.org/10.1080/07352689991309162
  54. Hanssen, I. M., Lapidot, M. and Thomma, B. P. 2010. Emerging viral diseases of tomato crops. Mol. Plant-Microbe Interact. 23:539-548. https://doi.org/10.1094/MPMI-23-5-0539
  55. Harrison, B. D. and Robinson, D. J. 1999. Natural genomic and antigenic variation in whitefly transmitted geminivirus. Annu. Rev. Phytopathol. 37:369-398. https://doi.org/10.1146/annurev.phyto.37.1.369
  56. Hong, Y. and Stanley, J. 1996. Virus resistance in Nicotiana benthamiana conferred by African cassava mosaic virus replication associated (ACI) transgene. Mol. Plant. Microbe Interact. 9:219-225. https://doi.org/10.1094/MPMI-9-0219
  57. Hou, Y., Sanders, R., Ursin, V. M. and Gilbertson, R. L. 2000. Transgenic plants expressing geminivirus movement proteins: abnormal phenotypes and delayed infection by Tomato mottle virus in transgenic tomatoes expressing the Bean dwarf mosaic virus BV1 or BC1 proteins. Mol. Plant Microbe Interact. 13:297-308. https://doi.org/10.1094/MPMI.2000.13.3.297
  58. Hussain, M., Mansoor, S., Iram, S., Fatima, A. N. and Zafar, Y. 2005. The nuclear shuttle protein of Tomato leaf curl New Delhi virus is a pathogenecity determinant. J. Virol. 79: 4434-4439. https://doi.org/10.1128/JVI.79.7.4434-4439.2005
  59. Hussain, M., Mansoor, S., Iram, S., Zafar, Y. and Briddon, R. W. 2004. First report of Tomato leaf curl New Delhi virus affecting chilli pepper in Pakistan. Plant Pathol. 53:794. https://doi.org/10.1111/j.1365-3059.2004.01073.x
  60. Ingham, D. J., Pascal, E. and Lazarowitz, S. G. 1995. Both bipartite geminivirus movement proteins define viral host range, but only BL1determines viral pathogenicity. Virology 207: 191-204. https://doi.org/10.1006/viro.1995.1066
  61. Ito, T., Kimbara, J., Sharma, P. and Ikegami, M. 2009. Interaction of Tomato yellow leaf curl virus with diverse betasatellites enhances symptom severity. Arch. Virol. 154:1233-1239. https://doi.org/10.1007/s00705-009-0431-8
  62. Ito, T., Sharma, P., Kittipakorn, K. and Ikegami, M. 2008. Complete nucleotide sequence of a new isolate of Tomato leaf curl New Delhi virus infecting cucumber, bottle gourd and muskmelon in Thailand. Arch. Virol. 153:611-613. https://doi.org/10.1007/s00705-007-0029-y
  63. Jan, F.-J., Green, S. K., Shih, S. L., Lee, L. M., Ito, H., Kimbara, J., Hosoi, K. and Tsai, W. S. 2007. First report of Tomato yellow leaf curl Thailand virus in Taiwan. Plant Dis. 91:1363.
  64. Jorda, C., Font, I., Martinez, P., Juarez, N., Ortega, A. and Lacasa, A. 2001. Current status and new natural hosts of tomato yellow leaf curl virus (TYLCV) in Spain. Plant Dis. 85: 445.
  65. Kato, K., Onuki, M., Fuji, S. and Hanada, K. 1998. The first occurrence of tomato yellow leaf curl virus in tomato (Lycopersicon esculentum Mill.) in Japan. Ann. Phytopathol. Soc. Japan 64:52-559.
  66. Khan, M. S., Raj, S. K. and Singh, R. 2006. First report of Tomato leaf curl New Delhi virus infecting chilli (Capsicum annuum) in India. Plant Pathol. 55:289.
  67. Kim, S. H., Oh, S., Oh, T.-K., Park, J. S., Kim, S. C., Kim, S. H., Kim, Y. S., Hong, J. K., Sim, S.-Y., Park, K. S., Lee, H. G., Kim, K. J. and Choi, C. W. 2011. Genetic diversity of tomatoinfecting Tomato yellow leaf curl virus (TYLCV) isolates in Korea. Virus Genes 42:117-127. https://doi.org/10.1007/s11262-010-0541-0
  68. Kitamura, K., Murayama A. and Ikegami, M. 2004. Evidence for recombination among isolates of Tobacco leaf curl Japan virus and Honeysuckle yellow vein mosaic virus. Arch. Virol. 149:1221-1229. https://doi.org/10.1007/s00705-003-0276-5
  69. Knierim, D. and Maiss, E. 2007. Application of Phi29 DNA polymerase in identification and full-length clone inoculation of Tomato yellow leaf curl Thailand virus and Tobacco leaf curl Thailand virus. Arch. Virol. 152:941-954. https://doi.org/10.1007/s00705-006-0914-9
  70. Kon, T., Kuwabara, K., Hidayat, S. H. and Ikegami, M. 2007. A begomovirus associated with ageratum yellow vein disease in Indonesia: evidence for natural recombination between tomato leaf curl Java virus and Ageratum yellow vein virus-[Java]. Arch. Virol. 152:1147-1157. https://doi.org/10.1007/s00705-006-0928-3
  71. Kunik, T., Salamon, D., Zamir, D., Navot, N., Zeidan, M., Michelson, I., Gafni, Y. and Czosnek, H. 1994. Transgenic tomato plants expressing the tomato yellow curl virus capsid protein are resistant to the virus. Nature Biotechnol. 12:500-504. https://doi.org/10.1038/nbt0594-500
  72. Lazarowitz, S. G. 1992. Geminiviruses: Genome structure and gene function. CRC Crit. Rev. Plant Sci. 11:327-349. https://doi.org/10.1080/07352689209382350
  73. Lee, G., Kim, S., Jung, J., Auh, C. K., Choi, E., Chang, M. and Lee, S. 2011. Agroinoculation of Nicotiana benthamiana with cloned Honeysuckle yellow vein virus isolated from Lonicera japonica. Arch. Virol. 156:785-791. https://doi.org/10.1007/s00705-011-0916-0
  74. Lee, H., Song, W., Kwak, H.-R., Kim, J.-D., Park, J., Auh, C.-K., Kim, D.-H., Lee, K.-Y., Lee, S. and Choi, H.-S. 2010. Phylogenetic analysis and inflow route of Tomato yellow leaf curl virus (TYLCV) and Bemisia tabaci in Korea. Mol. Cells 30:467-476. https://doi.org/10.1007/s10059-010-0143-7
  75. Li, Z. H., Zhou, X. P., Zhang, X. and Xie, Y. 2004. Molecular characterization of tomato-infecting begomoviruses in Yunnan, China. Arch. Virol. 149:1721-1732.
  76. Loebenstein, G.and Thottappilly, G. 2009. The Sweetpotato. Springer-Verlag, New York, USA. 552 pp.
  77. Lyttle, D. J. and Guy, P. L. 2004. First record of Geminiviruses in New Zealand: Abutilon mosaic virus and Honeysuckle yellow vein virus. Australas. Plant Pathol. 33:321-322. https://doi.org/10.1071/AP04008
  78. Ma, D., Gorman, K., Devine, G., Luo, W. and Denholm, I. 2007. The biotype and insecticide-resistance status of whiteflies, Bemisia tabaci (Hemiptera: Aleyrodidae), invading cropping systems in Xinjiang Uygur Autonomous Region, northwestern China. Crop Prot. 26:612-617. https://doi.org/10.1016/j.cropro.2006.04.027
  79. Mansoor, S., Briddon, R. W. and Zafar, Y. 2006. Geminivirus disease complexes; the threat is spreading. Trends Plant Sci. 11:209-212. https://doi.org/10.1016/j.tplants.2006.03.003
  80. Mansoor, S., Briddon, R. W., Zafar, Y. and Stanley, J. 2003. Geminivirus disease complexes: an emerging threat. Trends Plant Sci. 8:128-134. https://doi.org/10.1016/S1360-1385(03)00007-4
  81. Mansoor, S., Khan, S. H. and Saeed, M. 1997. Evidence for the association of a bipartite geminivirus with tomato leaf curl disease in Pakistan. Plant Dis. 81:958.
  82. Mansoor, S., Khan, S. H., Bashir, A., Saeed, M., Zafar, Y., Malik, K. A., Briddon, R., Stanley, J. and Markham, P. G. 1999. Identification of a novel circular single-stranded DNA associated with cotton leaf curl disease in Pakistan. Virology 259:190-199. https://doi.org/10.1006/viro.1999.9766
  83. Mansoor, S., Khan, S. H., Hussain, M., Mushtaq, N., Zafar, Y. and Malik, K. A. 2000a. Evidence that watermelon leaf curl disease in Pakistan is associated with tomato leaf curl virus-India. Plant Dis. 84:102.
  84. Mansoor, S., Khan, S. H., Hussain, M., Zafar, Y., Pinner, M. S., Briddon, R. W., Stanley, J. and Markham, P. G. 2000b. Association of a begomovirus and nanovirus like molecule with ageratum yellow vein disease in Pakistan. Plant Dis. 84:101.
  85. Maruthi, M. N., Rekha, A. R., Cork, A., Colvin, J., Alam, S. N. and Kader, K. A. 2005. First report of Tomato leaf curl New Delhi virus infecting tomato in Bangladesh. Plant Dis. 89:1011.
  86. Matsuda, N., Sharma, P., Bajet, N. B. and Ikegami, M. 2008. Molecular characterization of a new strain of tomato leaf curl Philippines virus and its associated satellite DNA$\beta$ molecule: further evidence for natural recombination amongst begomoviruses. Arch. Virol. 153:961-967. https://doi.org/10.1007/s00705-008-0065-2
  87. McGlashan, D., Polston, J. E. and Bois, D. 1994. Tomato yellow leaf curl geminivirus in Jamaica. Plant Dis. 78:1219.
  88. Mizutani, T., Daryono, B. S., Ikegami, M. and Natsuaki, K. T. 2011. First Report of Tomato leaf curl New Delhi virus Infecting Cucumber in Central Java, Indonesia. Plant Disease 95: 1485. http://dx.doi.org/10.1094/PDIS-03-11-0196
  89. Moffat, A. S. 1999. Geminiviruses emerge as serious crop threat. Science 286:1835. https://doi.org/10.1126/science.286.5446.1835
  90. Monci, F., Sanchez-Campos, S., Navas-Castillo, J. and Moriones, E. 2002. A natural recombinant between the geminiviruses Tomato yellow leaf curl Sardinia virus and Tomato yellow leaf curl virus exhibits a novel pathogenic phenotype and is becoming prevalent in Spanish populations. Virology 303: 317-326. https://doi.org/10.1006/viro.2002.1633
  91. Morales, F. J. and Anderson, P. K. 2001. The emergence and dissemination of whitefly-transmitted geminiviruses in Latin America. Arch. Virol. 146:415-441. https://doi.org/10.1007/s007050170153
  92. Morilla, G., Krenz, B., Jeske, H., Bejarano, E. R. and Wege, C. 2004. Tete a tete of Tomato yellow leaf curl virus and Tomato yellow leaf curl Sardinia virus in single nuclei. J. Virol. 78:10715-10723. https://doi.org/10.1128/JVI.78.19.10715-10723.2004
  93. Moriones, E. and Navas-Castillo, J. 2008. Rapid evolution of the population of begomoviruses associated with the tomato yellow leaf curl disease after invasion of a new ecological niche. Span. J. Agric. Res. 6:147-159. https://doi.org/10.5424/sjar/200806S1-383
  94. Mound, L. A. and Halsey, S. H. 1978. Whitefly of the world: a systemic catalogue of the Aleyrodidae (Homoptera) with host plant and natural enemy data. British Museum (Natural History), London and John Wiley and Sons, Chichester,UK. 329 pp.
  95. Nakhla, M. K., Sorenson, A., Mejía, L., Ramírez, P., Karkashian, J. P. and Maxwell, D. P. 2005. Molecular characterization of tomato-infecting begomoviruses in central america and development of DNA-based detection methods. Acta Hort. 695:277-288.
  96. Navot, N., Pichersky, E., Zeidan, M., Zamir, D. and Czosnek, H. 1991. Tomato yellow leaf curl virus: a whitefly-transmitted geminivirus with a single genomic component. Virology 185:151-161. https://doi.org/10.1016/0042-6822(91)90763-2
  97. Nawaz-ul-Rehman, M. S. and Fauquet, C. M. 2009. Evolution of geminiviruses and their satellites. FEBS Lett. 583:1825-1832. https://doi.org/10.1016/j.febslet.2009.05.045
  98. Ndunguru, J., Legg, J. P., Aveling, T. A. S., Thompson, G. and Fauquet, C. M. 2005. Molecular biodiversity of cassava begomoviruses in Tanzania: evolution of cassava geminiviruses in Africa and evidence for East Africa being a center of diversity of cassava geminiviruses. Virol. J. 2:21. https://doi.org/10.1186/1743-422X-2-21
  99. Noris, E., Lucioli, A., Tavazza, R., Caciagli, P., Accotto, G. P. and Tavazza, M. 2004. Tomato yellow leaf curl Sardinia virus can overcome transgene-mediated RNA silencing of two essential viral genes. J. Gen. Virol. 85:1745-1749. https://doi.org/10.1099/vir.0.79944-0
  100. Noueiry, A. O., Lucas, W. J. and Gilbertson, R. L. 1994. Two proteins of a plant DNA virus coordinate nuclear and plasmodesmal transport. Cell 76: 925-932. https://doi.org/10.1016/0092-8674(94)90366-2
  101. Ogawa, T., Sharma, P. and Ikegami, M. 2008. The begomoviruses Honeysuckle yellow vein mosaic virus and Tobacco leaf curl Japan virus with DNA $\beta$ satellites cause yellow dwarf disease of tomato. Virus Res. 137:235-244. https://doi.org/10.1016/j.virusres.2008.07.021
  102. Padidam, M., Fauquet, C. M. and Beachy, R. N. 1995. Tomato leaf curl geminivirus from India has a bipartite genome and coat protein is not essential for infectivity. J. Gen. Virol. 76:25-35. https://doi.org/10.1099/0022-1317-76-1-25
  103. Paprotka, T. Metzler, V. and Jeske, H. 2010. The first DNA 1-like alpha satellites in association with New World begomoviruses in natural infections. Virol. 404:148-57. https://doi.org/10.1016/j.virol.2010.05.003
  104. Paximadis, M., Idris, A. M., Torres-Jerez, I., Villarreal, A., Rey, M. E. and Brown, J. K. 1999. Characterization of tobacco geminiviruses in the Old and New World. Arch. Virol. 144: 703-717. https://doi.org/10.1007/s007050050537
  105. Perring, T. M. 2001. The Bemisia tabaci species complex. Crop Protect. 20:725-737. https://doi.org/10.1016/S0261-2194(01)00109-0
  106. Pico, B., Diez, M. J. and Nuez, F. 1996. Viral diseases causing the greatest economic losses to the tomato crop. II. The Tomato yellow leaf curl viru-a review. Sci. Hort. 67:151-196. https://doi.org/10.1016/S0304-4238(96)00945-4
  107. Pita, J. S., Fondong, V. N., Sangaré, A., Otim-Nape, G. W., Ogwal, S. and Fauquet, C. M. 2001. Recombination, pseudorecombination and synergism of geminiviruses are determinant keys to the epidemic of severe cassava mosaic disease in Uganda. J. Gen. Virol. 82: 655-665.
  108. Polston, J. E. and Anderson, P. K. 1997. The emergence of whitefly transmitted geminiviruses in tomato in the western hemisphere. Plant Dis. 81:1358-1369. https://doi.org/10.1094/PDIS.1997.81.12.1358
  109. Polston, J. E., Bois, D., Ano, G., Poliakoff, F. and Urbino, C. 1998. Occurrence of a strain of potato yellow mosaic geminivirus in tomato in the eastern Caribbean. Plant Dis. 82:126.
  110. Qu, J., Ye, J. and Fang, R. 2007. Artificial microRNA-mediated virus resistance in plants. J. Virol. 81:6690-6699. https://doi.org/10.1128/JVI.02457-06
  111. Raj, S. K., Singh, R., Pandey, S. K. and Singh, B. P. 2005. Agrobacterium- mediated tomato transformation and regeneration of transgenic lines expressing Tomato leaf curl virus coat protein gene for resistance against TLCV infection. Curr. Sci. 88:1675-1679.
  112. Reddy, C. R. V., Colvin, J., Muniyappa, V. and Seal, S. 2005. Diversity and distribution of begomoviruses infecting tomato in India. Arch. Virol. 150:845-867. https://doi.org/10.1007/s00705-004-0486-5
  113. Revington, G. N., Sunter, G. and Bisaro, D. M. 1989. DNA sequences essential for replication of the B genome component of tomato golden mosaic virus. Plant Cell 1:985-992. https://doi.org/10.1105/tpc.1.10.985
  114. Ribeiro, S. G., Ambrozevicius, L. P., Avila, A. C., Bezerra, I. C., Calegario, R. F., Farnandes, J. J., Lima, M. F., de Mello, R. N., Rocha, H. and Zerbini, F. M. 2003. Distribution and genetic diversity of tomato-infecting begomoviruses in Brazil. Arch. Virol. 148:281-295. https://doi.org/10.1007/s00705-002-0917-0
  115. Rochester, D. E., Depaulo, J. J., Fauquet, C. M. and Beachy, R. N. 1994. Complete nucleotide sequence of the geminivirus tomato yellow leaf curl virus, Thailand isolate. J. Gen. Virol. 75:477-485. https://doi.org/10.1099/0022-1317-75-3-477
  116. Rojas, A., Kvarnheden, A., Marcenaro, D. and Valkonen, J. P. T. 2005. Sequence characterization of Tomato leaf curl Sinaloa virus and Tomato severe leaf curl virus: phylogeny of New World begomoviruses and detection of recombination. Arch. Virol. 150:1281-1299. https://doi.org/10.1007/s00705-005-0509-x
  117. Romay, G., Chirinos, D., Geraud-Pouey, F. and Desbiez, C. 2010. Association of an atypical alphasatellite with a bipartite New World begomovirus. Arch. Virol. 155:1843-1847. https://doi.org/10.1007/s00705-010-0760-7
  118. Roye, M. E., Brown, S., Spence, J. D., Smith, K., McLaughlin, W. A., Brown, J. K. and Maxwell, D. P. 2003. Ten years of molecular biology research on whitefly transmitted geminivirus from Jamaica: a review. Jam. J. Sci. Technol. 14:98-118.
  119. Roye, M., Collins, A., Brown, M., Stewart, C., Turner, S., Chin, M., Fisher, L., Tennant, P. and McLaughlin, W. 2007. Plant virus and phytopathology research in Jamaica: a review. Am. J. Plant Sci. Biotechnol. 1:36-46.
  120. Rybicki, E. P. 1994. A phylogenetic and evolutionary justification for three genera of Geminiviridae. Arch. Virol. 139:49-77. https://doi.org/10.1007/BF01309454
  121. Saeed, M. 2006. The role of a geminiviral DNA-$\beta$ satellite in viral pathogenicity and movement. Ph.D. thesis. University of Adelaide, Adelaide, Australia.
  122. Saeed, M., Behjatnia, S. A., Mansoor, S., Zafar, Y., Hasnain, S. and Rezaian, M. A. 2005. A single complementary-sense transcript of a geminiviral DNA $\beta$ satellite is determinant of pathogenicity. Mol. Plant Microbe Interact. 18:7-14. https://doi.org/10.1094/MPMI-18-0007
  123. Sanchez-Campos, S., Navas-Castillo, J., Monci, F., Díaz, J. A. and Moriones, E. 2000. Mercurialis ambigua and Solanum luteum: two newly discovered natural hosts of tomato yellow leaf curl geminiviruses. Eur. J. Plant Pathol. 106:391-394. https://doi.org/10.1023/A:1008758622582
  124. Sanchez-Campos, S., Navas-Castillo, J., Camero, R., Soria, C., Diaz, J. A. and Moriones, E. 1999. Displacement of Tomato yellow leaf curl virus (TYLCV)-Sr by TYLCV-Is in tomato epidemics in Spain. Phytopathology 89:1038-1043. https://doi.org/10.1094/PHYTO.1999.89.11.1038
  125. Sanz, A. I., Fraile, A., Garcia-Arenal, F., Zhou, X., Robinson, D. J., Khalid, S., Butt, T. and Harrison, B. D. 2000. Multiple infection, recombination and genome relationships among begomovirus isolates found in cotton and other plants in Pakistan. J. Gen. Virol. 81:1839-1849.
  126. Saunders, K. and Stanley, J. 1999. A nanovirus-like component associated with yellow vein disease of Ageratum conyzoides: evidence for interfamilial recombination between plant DNA viruses. Virology 264:142-152. https://doi.org/10.1006/viro.1999.9948
  127. Saunders, K., Bedford, I. D. and Stanley, J. 2001. Pathogenicity of a natural recombinant associated with ageratum yellow vein disease: implications for geminivirus evolution and disease aetiology. Virology 282:38-47. https://doi.org/10.1006/viro.2000.0832
  128. Saunders, K., Norman, A., Gucciardo, S. and Stanley, J. 2004. The DNA $\beta$ satellite component associated with ageratum yellow vein disease encodes an essential pathogenicity protein (bC1). Virology 324:37-47. https://doi.org/10.1016/j.virol.2004.03.018
  129. Saunders, K., Salim, N., Mali, V. R., Malathi, V. G., Briddon, R. W., Markham, P. G. and Stanley, J. 2002. Characterisation of Sri Lankan cassava mosaic virus and Indian cassava mosaic virus: evidence for acquisition of a DNA-B component by a monopartite begomovirus. Virology 293:63-74. https://doi.org/10.1006/viro.2001.1251
  130. Sawangjit, S., Chatchawankanphanich, O., Chiemsombat, P., Attathom, T., Dale, J. and Attathom, S. 2005. Molecular characterization of tomato-infecting begomoviruses in Thailand. Virus Res. 109:1-8. https://doi.org/10.1016/j.virusres.2004.10.001
  131. Seal, S. E., Jeger, M. J. and Van den Bosch, F. 2006a. Begomovirus evolution and disease management. Adv. Virus. Res. 67:297-316. https://doi.org/10.1016/S0065-3527(06)67008-5
  132. Seal, S. E., van den Bosch, F. and Jeger, M. J. 2006b. Factors influencing begomovirus evolution and their increasing global significance: implications for sustainable control. Cri. Rev. Plant Sci. 25:23-46. https://doi.org/10.1080/07352680500365257
  133. Shafiq, M., Asad, S., Zafar, Y., Briddon, R. W. and Mansoor, S. 2010. Pepper leaf curl Lahore virus requires the DNA B component of Tomato leaf curl New Delhi virus to cause leaf curl symptoms. Virol. J. 7:367-374. https://doi.org/10.1186/1743-422X-7-367
  134. Shih, S. L., Tsai, W. S., Lee, L. M., Wang, J. T., Green, S. K. and Kenyon, L. 2010. First report of Tomato yellow leaf curl Thailand virus associated with pepper leaf curl disease in Taiwan. Plant Dis. 94:637.
  135. Sohrab, S. S., Mandal, B., Pant, R. P. and Varma, A. 2003. First report of Association of Tomato leaf curl virus-New Delhi with yellow mosaic disease of Luffa cylindrica in India. Plant Dis. 87:1148.
  136. Srivastava, K. M., Hallan, V., Raizada, R. K., Chandra, G., Singh, B. P. and Sane, P. V. 1995. Molecular cloning of Indian tomato leaf curl virus genome following a simple method of concentrating the supercoiled replicative form of viral DNA. J. Virol. Methods 51:297-304. https://doi.org/10.1016/0166-0934(94)00122-W
  137. Stanley, J., Bisaro, D. M., Briddon, R. W., Brown, J. K., Fauquet, C. M., Harrison, B. D., Rybicki, E. P. and Stenger, D. C. 2005. Family Geminiviridae. In: Virus Taxonomy. Eighth Report of the International Committee on Taxonomy of Viruses, ed. by C. M. Fauquet, M. A. Mayo, J. Maniloff, U. Desselberger and L. A. Ball, 301-326. Elsevier-Academic Press, San Diego, CA, USA.
  138. Tahir, M. and Haider, M. S. 2005. First report of Tomato leaf curl New Delhi virus infecting bitter gourd in Pakistan. Plant Pathol. 54:807. https://doi.org/10.1111/j.1365-3059.2005.01215.x
  139. Tao, X. and Zhou, X. 2008. Pathogenicity of a naturally occurring recombinant DNA satellite associated with tomato yellow leaf curl China virus. J. Gen. Virol. 89:306-311. https://doi.org/10.1099/vir.0.83388-0
  140. Thommes, P., Osman, T. A. M., Hayes, R. J. and Buck, K. W. 1993. TGMV replication protein ALl preferentially binds to single-stranded DNA from the common region. FEES Lett. 319:95-99. https://doi.org/10.1016/0014-5793(93)80044-U
  141. Tsai, W. S., Shih, S. L., Kenyon, L., Green, S. K. and Jan, F.-J. 2011. Temporal distribution and pathogenicity of the predominant tomato-infecting begomoviruses in Taiwan. Plant Pathol. 158:275-287.
  142. Usharani, K. S. Surendranath, B., Paul-Khurana, S. M., Garg, I. D. and Malathi, V. G. 2004. Potato leaf curl- a new disease of potato in northern India caused by a strain of Tomato leaf curl New Delhi virus. Plant Pathol. 53:235. https://doi.org/10.1111/j.0032-0862.2004.00959.x
  143. Varma, A. and Malathi, V. G. 2003. Emerging geminivirus problems: A serious threat to crop production. Ann. Appl. Biol. 142:145-164. https://doi.org/10.1111/j.1744-7348.2003.tb00240.x
  144. Varma, A., Jain, R. K. and Bhat, A. I. 2002. Virus resistant transgenic plants for environmentally safe management of viral diseases. Indian J. Biotechnol. 1:73-86.
  145. Von Arnim, A. and Stanley, J. 1992. Determinants of tomato golden mosaic virus symptom developmentlocated on DNAB. Virology 186:286-293. https://doi.org/10.1016/0042-6822(92)90083-2
  146. Wang, Y., Ji, J., Oh, T.-K., Oh, S., Kim, S. H., Lee, H. J., Shim, M. Y., Choi, C. W., Kim, S. H., Kim, I.-S. and Kim, Y. S. 2011. Occurrence of Honeysuckle yellow vein virus (HYVV) containing a monopartite DNA-A genome in Korea. Eur. J. Plant Pathol. 129:361-370. https://doi.org/10.1007/s10658-010-9716-8
  147. Wisler, G. C., Duffus, J. E., Liu, H. Y. and Li, R. H. 1998. Ecology and epidemiology of whitefly-transmitted closteroviruses. Plant Dis. 82:270-280. https://doi.org/10.1094/PDIS.1998.82.3.270
  148. Wu, J. B., Dai, F. M. and Zhou, X. P. 2006. First report of Tomato yellow leaf curl virus in China. Plant Dis. 90:1359.
  149. Xie, Y., Wu, P., Liu, P., Gong, H. and Zhou, X. 2010. Characterization of alphasatellites associated with monopartite begomovirus/betasatellite complexes in Yunnan, China. Virol. J. 7:178. https://doi.org/10.1186/1743-422X-7-178
  150. Yang, Y., Sherwood, T. A., Patte, C. P., Hiebert, E. and Polston, J. E. 2004. Use of Tomato yellow leaf curl virus (TYLCV) Rep gene sequences to engineer TYLCV resistance in tomato. Phytopathol. 94:490-496. https://doi.org/10.1094/PHYTO.2004.94.5.490
  151. Yin, Q., Yang, H., Gong, Q., Wang, H., Liu, Y., Hong, Y. and Tien, P. 2001. Tomato yellow leaf curl China virus: monopartite genome organization and agroinfection of plants. Virus Res. 81:69-76. https://doi.org/10.1016/S0168-1702(01)00363-X
  152. Zhang, H., Hu, G. and Zhou, X. 2010. Molecular Characterization of Tomato Leaf Curl Hainan Virus, a New Begomovirus, and Evidence for Recombination. J. Phytopathol. 158:829-832. https://doi.org/10.1111/j.1439-0434.2010.01689.x
  153. Zhang, L. P., Zhang, Y. J., Zhang, W. J., Wu, Q. J., Xu, B. Y. and Chu, D. 2005. Analysis of genetic diversity among different geographical populations and determination of biotypes of Bemisia tabaci in China. J. Appl. Entomol. 129:121-128. https://doi.org/10.1111/j.1439-0418.2005.00950.x
  154. Zhou, X., Xie, Y., Tao, X., Zhang, Z., Li, Z. and Fauquet, C. M. 2003. Characterization of DNA associated with begomoviruses in China and evidence for co-evolution with their cognate viral DNA-A. J. Gen. Virol. 84:237-247. https://doi.org/10.1099/vir.0.18608-0

Cited by

  1. Mechanical transmission of Tomato leaf curl New Delhi virus to cucurbit germplasm: selection of tolerance sources in Cucumis melo vol.204, pp.3, 2015, https://doi.org/10.1007/s10681-015-1371-x
  2. Resistance to tomato leaf curl New Delhi virus in melon is controlled by a major QTL located in chromosome 11 vol.36, pp.10, 2017, https://doi.org/10.1007/s00299-017-2175-3
  3. Molecular epidemiology of begomoviruses occurring on some vegetables, grain legume and weed species in the Terai belt of north India vol.121, pp.2, 2014, https://doi.org/10.1007/BF03356491
  4. Resistance to Tomato leaf curl New Delhi virus in Cucurbita spp. vol.169, pp.1, 2016, https://doi.org/10.1111/aab.12283