DOI QR코드

DOI QR Code

A Study on the Effects of Semi-Gel Electrolyte in Electricity Storage Battery

Semi-Gel 전해액이 전력저장용 배터리에 미치는 영향에 관한 연구

  • Jeong, Soon-Wook (Dept. of Information & Nano Materials Engineering, Kumoh National Instituteof Technology) ;
  • Ku, Bon-Keun (Dept. of Information & Nano Materials Engineering, Kumoh National Instituteof Technology)
  • 정순욱 (금오공과대학교 정보나노소재공학과) ;
  • 구본근 (금오공과대학교 정보나노소재공학과)
  • Received : 2012.03.20
  • Accepted : 2012.06.15
  • Published : 2012.06.30

Abstract

The following results are from the test of semi-gel electrolyte to store energy efficiently and use advanced VRLA batteries by photovoltaic and wind power generation. Semi-Gel electrolyte with Silica 5% became Gel after 1 and half hour. It shows it is the most suitable time that the electrolyte can be absorbed into the separator and active material of plate to be gel. The test also says that semi-gel electrolyte shows the much better performance for low-rate discharge and the liquid electrolyte is good for high-rate discharge because the reaction rate of gel electrolyte is slower than liquid one for high-rate discharge performance. The test with DOD10% and DOD100% says that 5% silica electrolyte shows much better performance for life efficiency than liquid one. Because semi-gel electrolyte increase the efficiency of gas recombination at the chemical reaction of VRLA battery and it makes minimizing the reduction of electrolyte. Using the 5% silica electrolyte in order to improve the stroage efficiency and life performance for photovoltic and wind power generation, it causes improving by 4.8% for DOD100% and 20% for DOD10%.

태양광 또는 풍력을 이용해 발생된 에너지를 효율적으로 저장과 사용을 위한 납 축전지의 성능을 향상 시키기 위해 전해액을 Semi-gel화 하여 납축전지에 적용하여 시험한 결과, 다음과 같은 결과를 얻었다. Semi-gel 전해액은 silica를 5wt.% 혼합한 전해액이 1시간 30분경과 시 gel화가 시작되었다. 이는 전해액이 격리판과 극판 활물질 내부까지 완전히 스며들기에 충분한 시간으로 가장 적정한 gel화 시간을 나타내었다. Semi-gel 전해액을 사용한 납축전지와 액상 전해액을 사용한 납축전지의 방전 성능을 비교한 결과, 저율방전 성능은 semi-gel전해액이, 고율방전 성능은 액상 전해액이 높은 성능을 나타내었다. 이는 gel 전해액의 경우 액상 전해액에 비해 반응속도가 느려 고율방전 성능이 낮은 것으로 나타내었다. 수명성능을 DOD 10%, DOD 100%로 시험한 결과, 5%-silica 전해액이 액상 전해액을 사용한 납축전지에 비해 우수한 수명 성능을 나타내었다. 이는 Semi-gel상 태의 전해액이 납축전지 내부 화학반응 시 발생하는 gas의 재결합 효율을 높여 전해액 감액량이 최소화로 한 결과로 수명성능에서 큰 차이를 나타내었다. 태양광, 풍력 등과 같은 에너지 저장 효율을 높이고, 수명성능을 향상시키기 위해 전해액에 5%-silica전해액을 사용하면 전해액의 감액량이 최소로 되어 DOD 100% 수명시험의 경우 4.8%, DOD 10% 수명시험의 경우 20%의 수명성능이 향상되었다.

Keywords

References

  1. R. Wagner, Failure Modes of Valveregulated Lead/acid Batteries in Different Applications, 4th European lead battery conference, 153 (1995).
  2. J. E. Dix, A Comparison of Barton-pot and Ball-mill Processes for Making Leady Oxide, J . Power Sources, 19, 157 (1987). https://doi.org/10.1016/0378-7753(87)80024-1
  3. M. Matrakova and D. Pavlov, Thermal Analysis of Lead-Acid Battery Pastes and Active Materials, J . Power Sources, 158, 1004 (2006). https://doi.org/10.1016/j.jpowsour.2005.11.007
  4. S. W. Jeong, and B. K. Ku, A Study on the Additive of Positive Paste in Lead Acid Battery, J . Kor. Oil Chem. Soc., 27(2), 196 (2010).
  5. D, Pavlov, M. Dimitrov, T. Rogachev, and L. Bogdanova, Influence of Paste Composition and Curing Program and Used for the Production of PositivePlates with PbCaSn Grids on the Performance of Lead Acid Batteries, J. Power Sources, 114, 137 (2003). https://doi.org/10.1016/S0378-7753(02)00593-1
  6. B. K. Ku, and S. W. Jeong, A Study on the Curing of Positive Plate and Grid to Improve the Capacity of the Lead-Acid Batteries, J. Kor. Oil Chem. Soc., 25(1), 41 (2008).
  7. B. K. Ku and S. W. Jeong, A Study on the Pb-Ca-Sn Grid Alloy of Positive Plate in Lead-Acid Battery, J. Kor. Oil Chem. Soc., 25(4), 518 (2008).
  8. M. J. Weighall, Techniques for Jar Formation of Valve-Regulated Lead-Acid Batteries, J . Power Sources, 116, 219 (2003). https://doi.org/10.1016/S0378-7753(02)00706-1
  9. S. W. Jeong and B. K. Ku, Effects of 4BS Crystal Size on the Positive Plate Behavior in Lead Acid Battery, J . Kor. Oil Chem. Soc., 26, No.3, 335 (2009).
  10. S. Laruelle, Grugeon-Dewaele, L. Torcheux, and A. Delahaye-Vidal, The Curing Reaction Study of the Active Material in the Lead Acid Battery, J . Power Sources, 77, 83 (1999). https://doi.org/10.1016/S0378-7753(98)00187-6
  11. J. S. Chen and L. F. Wang, Effect of Curing on Positive-Plate Behaviour in Electric Scotter Lead/Acid Cells, J . Power Sources, 70, 269 (1998). https://doi.org/10.1016/S0378-7753(97)02657-8
  12. B. K. Ku and S. W. Jeong, Effects of Curing Conditions on the Chemical Compositions of Positive Plate for Lead Acid Battery Plates, J. Kor. Oil Chem. Soc., 23, No.4 347 (2006).
  13. J. Wang, S. Zhong, H. K. Liu, and S. X. Dou, Influence of Charge Mode on the Capacity and Cycle Life of Lead-acid Battery Negative Plates, J. Power Sources, 113, 355 (2003). https://doi.org/10.1016/S0378-7753(02)00548-7