DOI QR코드

DOI QR Code

TiO2 아나타제에 대한 고압 상변이 연구

Phase Transition Studies on TiO2 anatase under High Pressure

  • 황길찬 (경상대학교 지구환경과학과 및 기초과학연구소) ;
  • 김영호 (경상대학교 지구환경과학과 및 기초과학연구소)
  • Hwang, Gil-Chan (Department of Earth and Environmental Sciences and Research Institute of Natural Science, Gyeongsang National University) ;
  • Kim, Young-Ho (Department of Earth and Environmental Sciences and Research Institute of Natural Science, Gyeongsang National University)
  • 투고 : 2012.03.22
  • 심사 : 2012.06.22
  • 발행 : 2012.06.30

초록

$TiO_2$의 동질이상체 중 하나인 아나타제는 고압 하에서 결정의 크기와 모양에 따라 다른 상변이 경로를 보이는 것으로 알려져 있다. 본 실험에 이용된 아나타제 분말시료는 15~25 nm 정도 크기의 입자로 구성되어 있으며, 고압라만분광분석 결과와 고압 X-선회절실험결과 분석을 종합하면 20 GPa 이상의 압력에서 비정질로 상변이하는 것으로 관찰되었다. 상온에서 압력의 영향으로 상변이한 비정질 구조는 압력을 제거하여도 출발 결정구조로 회귀하지 않는 것으로 밝혀졌다. 이 결과는 베델레이트로 상변이하는 이전의 결과와 상치되며, 출발시료 구성입자의 분급상태가 입자의 불안정성에 영향을 끼쳐 최종적으로 비정질화에 기여한 것으로 판단된다.

Anatase, one of the $TiO_2$ polymorphs, is known to show different phase transition paths depending on its crystalline and shape. Particle size of 15~25 nm anatase has been subjected to high-pressure Raman spectroscopy and X-ray diffraction studies using a diamond anvil cell. We observe that the starting sample transforms to an amorphous phase above approx. 20 GPa, which is retained upon pressure release to ambient condition. This is in contrast to previously established transition to baddeleyite phase and we suspect difference in the particle distribution state trigger phase instability of nanoparticles and hence amorphization.

키워드

참고문헌

  1. 김영호, 황길찬, 김순오 (2009) 합성 괴타이트에 대한 압축실험. 한국광물학회지, 22, 325-330.
  2. 황길찬, 최진범 (2008) 리트벨트 구조분석법에 의한 $CeO_{2}$ 의 결정크기 및 미세응력 결정. 한국광물학회지, 21, 201-208.
  3. Barborini, E., Kholmanov, I.N., Piseri, P., Ducati, C., Bottani C.E., and Milani, P. (2002) Engineering the nanocrystalline structure of $TiO_{2}$ films by aerodynamically filtered cluster deposition. Appl. Phys. Lett., 81, 3052-3054. https://doi.org/10.1063/1.1510579
  4. Bell, P.M., Xu, J., and Mao, H.K. (1986) Static compression of gold and copper and calibration of the ruby pressure scale to 1.8 Megabars, in Shock Waves in Condensed matter. Gupta, Y.M. (eds.), Plenum Pub. Co., New York, 125-130.
  5. Burda, C., Lou, Y., Chen, X., Samia, A.C.S., Stout, J., and Gole, J.L. (2003) Enhanced nitrogen doping in $TiO_{2}$ nanoparticles. Nano Letters 3, 1049-1051. https://doi.org/10.1021/nl034332o
  6. Downs, R.T., Bartelmehs, K.L., Gibbs, G.V., and Boisen, M.B. (1993) Interactive software for calculating and displaying x-ray or neutron powder diffractometer patterns of crystalline materials. Am. Mineral., 78, 1104-1112.
  7. Gerward, L. and Olsen, J.S. (1997) Post-rutile highpressure phases in $TiO_{2}$. J. Appl. Cryst., 30, 259-264. https://doi.org/10.1107/S0021889896011454
  8. Gillet, P., Hemley, R.J., and McMillan, P.F. (1998) Vibrational properties at high pressures and temperatures. Rev. in Mineralogy, 37, Ultrahigh-Pressure Mineralogy: Phys. Chem. Earth's Deep Int., Hemley, R.J. (eds.), 525-590.
  9. Kingma, K.J., Cohen, R., Hemley, R., and Mao, H.K. (1995) Transformation of stishovite to a denser phase at lower-mantle pressure. Lett. Nature, 374, 243-244. https://doi.org/10.1038/374243a0
  10. Klug, H.P. and Alexander, L.E. (1974) X-rays; x-ray diffraction. John Wiley & Sons, New York, 966p.
  11. Kruger, M.B., Williams, Q., and Jeanloz, R. (1989) Vibrational spectra of $Mg(OH)_{2}$ and $Ca(OH)_{2}$ under pressure. J. Chem. Phys., 91, 5910-5915. https://doi.org/10.1063/1.457460
  12. Liu, L., Mernagh, T.P., and Hibberson, W.O. (1997) Raman spectra of high-pressure polymorphs of $SiO_{2}$ at various temperatures. Phys. Chem. Minerals 23, 396-402.
  13. Mao, H.K., Xu, J., and Bell, P.M. (1986) Calibration of the ruby pressure gauge to 800 kbar under quasihydrostatic conditions. J. Geophys. Res., 91, 4673-4676. https://doi.org/10.1029/JB091iB05p04673
  14. Meade, C. and Jeanloz, R. (1990) Compression of $Ca(OH)_{2}$ at room temperature observations of amorphization and equation of state measurements to 10.7 GPa. Geophys. Res. Lett., 17, 1157-1160. https://doi.org/10.1029/GL017i008p01157
  15. Mitra, S. (2004) Developments in Geochemistry 9; High-Pressure Geochemistry and Mineral Physics. Elsevier, 298p.
  16. Navrotsky, A. (2003) Energetics of nanoparticle oxides: Interplay between surface energy and polymorphism. Geochem. Trans., 4, 34-37. https://doi.org/10.1186/1467-4866-4-34
  17. Nguyen, J.H., Kruger, M.B., and Jeanloz, R. (1994) Compression and pressure-induced amorphization of $Co(OH)_{2}$ characterized by infrared vibration spectroscopy. Phys. Rev. B49, 3734-3738.
  18. Ono, S., Hirose, K, Murakami, M., and Ishiki, J. (2002) Post-stishovite phase boundary in $SiO_{2}$ determined by in situ x-ray observations. Earth & Planet. Sci. Lett., 197, 187-192. https://doi.org/10.1016/S0012-821X(02)00479-X
  19. Parker, J.S. and Siegei, R.W. (1990) Calibration of Raman spectrum to the oxygen stoichiometry of nanophase $TiO_{2}$. Appl. Phys. Lett, 57, 943-945. https://doi.org/10.1063/1.104274
  20. Park, S., Jang, J., Cheon, J., Lee, H., Lee, D. and Lee, Y. (2008) Shape-dependent compressibility of $TiO_{2}$ anatase nanoparticles. J. Phys. Chem. C, 112, 9627- 9631. https://doi.org/10.1021/jp801555a
  21. Sekiya, T., Ohta, S., Kamei, S., Hanakawa, M., and Kurita, S. (2001) Raman spectroscopy and phase transition of anatase $TiO_{2}$ under high pressure. J. of Phys. Chem. Solids 62, 717-721. https://doi.org/10.1016/S0022-3697(00)00229-8
  22. Sharma, S.M. and Sikka, S.K. (1996) Pressure induced amorphization of materials. Prog. Mat. Sci., 40, 1-77. https://doi.org/10.1016/0079-6425(95)00006-2
  23. Shieh, S.R. and Duffy, T.S. (2002) Raman spectroscopy of $Co(OH)_{2}$ at high pressures: Implications for amorphization and hydrogen repulsion. Phys. Rev. B66, 134301.
  24. Shieh, S., Mao, H., Hemley, R., and Ming, L.C. (2000) In situ x-ray diffraction studies of dense hydrous magnesium silicates at mantle conditions. Earth Planet. Sci. Lett., 177, 69-80. https://doi.org/10.1016/S0012-821X(00)00033-9
  25. Swamy, V., Kuznetsov, A., Dubrovinsky, L.S., Caruso, R.A., Shchukin, D.G., and Muddle, B.C. (2005) Finite-size and pressure effects on the Raman spectrum of nanocrystalline $TiO_{2}$. Phys. Rev. B71, 184302.
  26. Swamy, V., Kuznetsov, A., Dubrovinsky, L.S., Mc- Millan, P.F., Prakapenka, V.B., Shen, G., and Muddle, B.C. (2006a) Size-dependent pressureinduced amorphization in nanoscale $TiO_{2}$. Phys. Rev. Lett., 96, 135702. https://doi.org/10.1103/PhysRevLett.96.135702
  27. Swamy, V., Muddle, B.C., and Dai, Q. (2006b) Sizedependent modifications of the Raman spectrum of rutile $TiO_{2}$. Appl. Phys. Lett., 89, 163118. https://doi.org/10.1063/1.2364123
  28. Wagemaker, M., Kearley, G.J., van Well, A.A., Mutka, H., and Mulder, F.M. (2003) Multiple Li positions inside oxygen octahedra in lithiated $TiO_{2}$ anatase. J. Am. Chem. Soc. 125, 840-848. https://doi.org/10.1021/ja028165q
  29. Wang, Z. and Saxena, S.K. (2001) Raman spectoscopic study on pressure-induced amorphization in nanocrysalline anatase($TiO_{2}$). Solid State Comm. 118, 75-78. https://doi.org/10.1016/S0038-1098(01)00046-1
  30. Zhang, W.F., He, Y.L., Zhang, M.S., and Chen, Q. (2000) Raman scattering study on anatase $TiO_{2}$ nanocrystals. J. Phys. D: Appl. Phys. 33, 912-916. https://doi.org/10.1088/0022-3727/33/8/305

피인용 문헌

  1. 합성 활석에 대한 압축 연구 vol.27, pp.4, 2012, https://doi.org/10.9727/jmsk.2014.27.4.283
  2. 고압 하에서 TiO2 복합체의 거동에 대한 연구 vol.30, pp.3, 2012, https://doi.org/10.9727/jmsk.2017.30.3.127