
Journal of The Korea Society of Computer and Information

Vol. 17 No. 6 , June 2012
2012-17-6-3-4

Multi-Level Groupings of Minterms Using

the Decimal-Valued Matrix Method

1)김 은 기*

십진수로 표현된 매트릭스에 의한 최소항의 다층모형 그룹화

Eungi Kim*

요 약

This paper suggests an improved method of grouping minterms based on the Decimal-Valued

Matrix (DVM) method. The DVM is a novel approach to Boolean logic minimization method which

was recently developed by this author. Using the minterm-based matrix layout, the method

captures binary number based minterm differences in decimal number form. As a result,

combinable minterms can be visually identified. Furthermore, they can be systematically

processed in finding a minimized Boolean expression. Although this new matrix based approach is

visual-based, the suggested method in symmetric grouping cell values can become rather messy in

some cases. To alleviate this problem, the enhanced DVM method that is based on multi-level

groupings of combinable minterms is presented in this paper. Overall, since the method described

here provides a concise visualization of minterm groupings, it facilitates a user with more options

to explore different combinable minterm groups for a given Boolean logic minimization problem.

▸Keyword: Karnaugh Map, Quine-McCluskey, Minterm, Prime Implicant

Abstract

이 논문에서는 십진수의 매트릭스 방법 (DVM) 을 이용한 새로운 방법으로 불리언 논리를 최소화할 때 최소항

을 그룹화 하여 표시하는 방법을 제안하고 있다. DVM 방법은 매트릭스 방법을 이용하여 최소항에 관한 이진수의

차이를 십진수 형태로 변환하는 과정을 거치고, 결합할 수 있는 최소항을 직접 확인할 수 있다. 십진수의 매트릭스

∙제1저자 : Eungi Kim (김은기)

∙투고일 : 2012. 03. 09, 심사일 : 2012. 04. 21, 게재확정일 : 2012. 05. 04.

* 남서울대학교 정보통신공학과(Dept. of Information Communication Engineering, NamSeoul University)

84 Journal of The Korea Society of Computer and Information June 2012

방법은 시각적 접근에 따른 새로운 매트릭스이지만, 경우에 따라 주어진 셀 값을 그룹화 하는데 있어서 도형이 복잡

해지기도 하는 문제점이 있다. 이 논문은 이러한 문제점을 해결하기 위한 연구로, 십진수의 매트릭스 방법에 최소항

의 다단계 그룹을포함하는 기법을 제안하고 있다. 이 연구에서 제시하는 방법은 최소항의 그룹을 간결한 시각적인

방법으로 표현 하였으므로, 관련된 최소항을 구체적으로 파악하는 수단으로 사용할 수 있다.

▸Keyword :카르노맵, 퀸 매클러스키, 최소항, 후보항

I. Introduction

Logic minimization process is often difficult to

comprehend in detail. Gaining insights into the logic

minimization problem is not easy since the process

of minimizing logic can become tedious and complex.

To this end, Karnaugh map [1] is still popular today

for minimizing Boolean functions due to its

convenient constructable format. Although Karnaugh

map is predominantly visual-based and simple to

use, the major limitation is that it is only efficient

for problems that are less than 5-input variables.

In contrast, the Quine-McCluskey method [2] is

able to find an "exact" solution for larger input

variable problems. Quine-McCluskey’s basic

approach is to produce all allowable maximum-size

groups of minterms. In other words, the objective is

to find prime implicants that can cover the minterms

first.

Simple definitions need to be provided first. A

minterm is a product term that contains all of the

Boolean function's variables exactly once, and

minterms always contain the decimal numbers of

rows of the truth table in which the output is equal

to 1. A prime implicant is a product term which

cannot be further reduced by combining with other

terms.

The Quine-McCluskey method which was the first

systematic method that introduced the notion of

prime implicants. Based on the generated prime

implicants, finding minimum Boolean functions

involve selection of a minimum set of prime

implicants to cover a given Boolean function.

Although the Quine-McCluskey's method is

relatively simple to implement, it lacks visual

support in finding all of the required prime

implicants. Tracing prime implicants using

Quine-McCluskey’s method is cumbersome in most

cases. The reason is that it is often difficult to

instantly see detailed relationships among different

minterm numbers.

The Quine-McCluskey’s method is cumbersome in

most cases. The reason is that it is often difficult to

instantly see detailed relationships among different

minterm numbers. After the initial introduction of

the Quine-McClukey’s method, new innovative logic

minimization methods based on heuristics such as

binary decision diagram (BDD) [3][4] and

ESPRESSO [5] appeared in the literature. Most of

the algorithms that have been investigated in the

last two decades or so still focus on efficiently

finding a minimized solution for a given Boolean

logic function. In the recent years, a wide range of

methods that have been developed are either

heuristic-based or variants of the Quine-McCluskey's

methods [6][7][8][9][10][11][12]. While some of

them claim to solve large variable problems more

efficiently than the Quine-McCluskey's method, a

visual aspect of logic minimization problem has been

largely ignored all together.

Therefore, an alternative logic minimization

method that not only finds an exact solution to the

minimization problem but also visually depict

relationships among different minterms is needed.

The main purpose is to gain insights into the

Boolean logic minimization problem. For a larger

Boolean function in particular, being able to

visualize the process means an entire logic related

options can be better explored at a design level.

Previously, a novel approach to Boolean

Multi-Level Groupings of Minterms Using the Decimal-Valued Matrix Method 85

minimization problem called the Decimal-Value

Matrix (DVM) method [13] was suggested by this

author. This method minimizes the Boolean

function based on the unique matrix layout. The

matrix format represents the concise relationship

between different groups of minterms. Thus, based

on this minterm based matrix, the DVM method

relies on visual groupings of combinable Boolean

terms. Unlike Karnaugh Map, as the input

variables become larger, the size of matrix extends

gracefully beyond 5-input variables in the DVM

method.

However, the major bottleneck of the suggested

method is that in some cases too many

interconnected loops could be formed as a result of

connecting all of the cell values. Consequently, the

graph can look cluttered and messy at times.

Therefore, this paper improves the basic looping and

presents a method to find higher symmetric groups

for the matrix. The method presented in this paper

focuses on facilitating a multi-level grouping feature.

The basic idea behind using the multi-levels of

grouping scheme is that the higher level of grouping

can eliminate the lower level grouping details.

In order to fully understand the author’s

multi-level grouping procedures for the DVM

method, readers are first encouraged to become

familiar with Kanaugh map and Quine-McCluskey’s

method. Karnaugh maps and Quine-McCluskey’s

methods are widely covered in logic design related

textbooks such as [14][15][16]. Also, readers

should be familiar with basic terms and notions

related to logic minimization. A brief survey of

Boolean minimization methods, and the theoretical

treatment of current issues are provided in [17].

II. Preliminaries

The basic approach to logic minimization using

the DVM was described in [13]. This section

summarizes the essential background first in order

to present enhanced features in the subsequent

sections. The basic layout of DVM is shown in

Figure 1. The numbers at the most upper part of

the row and the left most part of the column

represent minterms. The odd bit-numbered groups

are on the top and even bit-numbered groups are on

the left side. Here, we have minterm (1,2,8,13) on

the top row and (0,3,9,15) on the left side column.

Note: The above labeled groups are bit-numbered groups.
Fig 1. The DVM Layout for Boolean function

å (0,1,2,3,8,9,13,15)

Using the binary equivalent number, minterms

are grouped based on the frequency count of 1. For

example, the binary number ‘0011’, which is

equivalent to decimal minterm number 3, belongs to

group 2. The reason is that there are two 1s in the

binary number ‘0011’. This type of grouping based

on the frequency count of 1s is referred as a

bit-numbered grouping. In order to show each

bit-numbered group is different from another, some

of the corresponding matrix areas are highlighted.

Based on the Boolean input-variables, a finite

number of bit-numbered groups are formed since the

number of bit-numbered is proportional to the

input-variables in general. As the number of input

variable increases, the number of minterms to

compute the prime implicants are likely to increase

as well. Using the matrix, a subtracted value that

86 Journal of The Korea Society of Computer and Information June 2012

is a power of 2 (e.g., 1,2,4,8, etc.) can be recorded

since each bit-numbered group intersects with next

higher bit-numbered group.

The symmetry line which is shown on the figure

divides each intersecting bit-number group areas.

As the bit-numbered groups expand for larger input

variable problems, the symmetry line will continue

to expand resembling downward stair steps. For

discussion purposes, from this point on we will

assume there is a symmetric line even though it will

not appear on the figure. The following terms are

defined for clarity.

Cell coordinate is a term used to denote a pair of

row and column minterms. For example, (8,0)

indicates the intersecting cell of minterm 8 and 0. In

Figure 1, since the matrix is in a 4x4 form, the

matrix contains 16 cell coordinates. For consistency,

we use a higher number first followed by a lower

number.

Cell value is a positive decimal number that is

power of 2 and is produced by intersecting two

minterms. Specifically, a cell value can be

calculated by subtracting a bit-numbered minterm

value from the next higher bit-numbered minterm

value. For example, a cell value of 8 can be derived

from cell coordinate (8,0) where 8 and 0 are

minterms. In Figure 2, minterm 0 is in

bit-numbered group 0, and minterm 8 is in the next

higher bit-numbered group, which is 1.

Cell coordinate value is a collective notation that

indicates a cell coordinate and a cell value. For

example, (3,1)2 is a cell coordinate value which

indicates that minterm 3 and minterm 1 have a

difference of cell value 2.

III. Levels of Symmetric Groups

As previously noted, this paper improves the

notion of the DVM method by applying the

multi-level grouping of minterms. Details of

suggested enhancement is described in the

remaining section.

In essence, we use various levels of grouping

scheme to represent the basic types of prime

implicants. Bit-numbered groups are the primary

basis for establishing different categorical levels:

Level 0 grouping connects 2 bit-numbered groups

together, Level 1 connects 3 bit-numbered groups,

Level 2 connects 4 bit-numbered groups together,

and Level 3 connects 5 bit-numbered groups

together. Any grouping of Level 3 or higher will

exhibit a similar pattern in connecting bit-numbered

groups.

1. Level 0 Grouping

The most primitive level in the DVM method is a

Level 0 Group. In Level 0 grouping, every

uncombined individual cell value belongs to a group.

In Figure 1, individual cell values are not

surrounded by any circles. Therefore the cell values

in a Level 0 group should not belong to any

symmetric groups.

2. Level 1 Grouping

In Level 1 grouping, the objective is to identify

Level 1 symmetric groups. Level 1 symmetric

groups can be formed by grouping the cell values

from three successive bit-numbered groups. More

specifically, two cells, which need to be in the same

column or in the same row, crosses a symmetric line

and form symmetry with another two cells in next

lower or next higher bit-numbered groups. Figure 2

shows three Level 1 symmetric groups which can be

formed for Boolean function å (0,1,2,3,8,9,13,15). Cell values
from successive bit-numbered groups can be combined

together if the cell values form a symmetry group as shown

in Figure 2.

Each symmetric group in Level 1 consists of 4 cell

values. For example, in group 1, the cell value 1

and 2 are symmetric to another cell value 1 and 2 by

crossing the symmetric line. For any member cell

that belongs to a symmetric group, identical cell

values can be located diagonally. To make certain

Multi-Level Groupings of Minterms Using the Decimal-Valued Matrix Method 87

Note:

indicates a Level 2 cell value.

indicates a pivot cell value.

that cell values are visually more distinguishable

from others, a cell value that belongs to more than

one symmetric group are enclosed by a doubled

circle.

Some cell values do not belong to a Level 1

symmetric group. As shown in Figure 2, cell

coordinate values (13,9)4 and (15,13)2 are not

linked to other symmetric groups since the cell

values do not form symmetry with other cell values.

Note:
represents a cell value in a Level 1 group.

indicates a congruent (intersecting) cell value in a Level 1 group.

Fig 2. Level 1 and Level 0 Grouping

In the previous version of the DVM method [13],

this type of grouping scheme was uniformly used for

every combinable cell value. Only Level 0 and Level

1 were essentially used for the grouping of

minterms. The shortcoming of this approach is that

a single combinable group may involve more than

just 4 cell values, and the connected lines can

become quiet messy sometimes. Because of this

reason, if only Level 0 and Level 1 groupings are

used for the Figure 3 Boolean function

å (0,1,2,3,4,8,9,10,11,1213), it is less convenient to see
certain combinable groups after the complete graph is

shown on the matrix. To remedy this representational

shortcomings that deals with beyond 4 combinable cell

values, we use the Level 2 and higher grouping schemes.

3. Level 2 Grouping

In Level 2 grouping, a total of 12 cell values are

linked to the symmetric group. It is still easy to

visually detect a Level 2 symmetric group. In

Figure 3, the cell-values which are labeled as the

pivot cell-value contain 1 as a numeric value. The

pivot cell is located in the upper left corner of the

matrix. The same pivot cell can be also found in the

lower right corner. Cells within the Level 2

grouping form a symmetric group. Then, in Level 2,

a symmetric group as whole forms another symmetry

with another symmetric group. Highlighting the

areas as in Figure 3 is not necessary since it is used

merely to show particular patterns of Level 2 group.

Fig. 3. Level 2 and Level 0 Grouping

For a more systematic approach in identifying

symmetric groups, we can look for a common set of 3

cell values which can occur in 4 successive

bit-numbered groups. The topology of cell values

that form a common set is important in order to

detect a valid Level 2 symmetric group. That is, a

rectangular shape that represent sub-matrix can be

formed by connecting four sides of the Level 2

symmetric groups. Within this sub-matrix form,

some cell values form symmetry with the pivot cells.

These cell values are also linked with Level 2 group

88 Journal of The Korea Society of Computer and Information June 2012

as they are determined as valid Level 2 members.

Consequently, recognizing sub-symmetry pattern

within this rectangular shaped sub-matrix is

necessary in order to correctly identify all of the

combinable values.

Suppose we have four successive bit-numbered

groups (W,X,Y,Z) and the side of the sub-matrix

is defined as S = {a,b,c}, where a, b, and c are cell

values in a matrix. If a is a pivot cell value in

bit-numbered group, then a sub-matrix will be

formed by intersecting 4 successive bit-numbered

groups.

A valid Level 2 group is formed based on meeting

the following conditions :

(a) a must exist in W-X sub-matrix area AND a

must also be in Y-Z sub-matrix area. They must

form in a single row or in a single column.

(b) The cell values {b,c} as a pair appear twice in

X-Y sub-matrix area, and both cell values line up

with the pivot cell.

(c) From each pivot cell value which is located at

two opposing corners, additional symmetry can be

formed with another cell. For example, in Figure 3,

the cell coordinate values (1,0), (2,0), (3,1), and

(3,2) form a symmetric group within the Level 2

group.

(d) A pivot cell contains the lowest numeric cell

value in S.

(e) Each side of Level 2 symmetric group consists

of S. For example, Figure 3 Level 2 group contains

{1,2,8} or {2,1,8} on each side the rectangular-shaped

loop. The cell members a,b,c do not have to be

adjacent to each other, but each side S need to

contain all the cell values a,b,c according to its

rectangular shape.

(f) For every row and column that has a Level 2

group link, complete members of S can be found in

that column or row.

If the above conditions are met, we can state that

the cell values are in a Level 3 group. For

simplicity, the member cell value can be linked to

any side of the rectangular shaped box.

Now the process of detecting the side and the

pivot cell value is slightly more involved. Since

there is no fixed location of pivot cell value, the

most primitive detection strategy is to compare cell

values from W-X, X-Y, Y-Z areas in order to find

valid participating cell members. If we treat the

entire horizontal cell-values as one set and the treat

entire vertical cell-values as another set, then we

can calculate the common cell-values between the

two sets by intersecting rows and columns.

4. Level 3 Grouping

A similar pattern can be found in groups higher

than level 2. Level 3 grouping has similar cell value

participation as in Level 2. Level 3 grouping will

comprised of a total of 32 cell values, which all of

these will be linked to a single Level 3 group.

Figure 4 shows an example that involves a Level 3

group with 6 input variables. The matrix shown in

the figure is for a Boolean function

å (0,4,8,12,16,20,22,24,28,32,36,40,41,44,48,52,56,60).

Note:

 represents a cell value of a Level 3 group.

 indicates a pivot cell of a Level 3 group.

Fig. 4. Level 3 and Level 0 Grouping

As exemplified in this figure, Level 3 grouping

involves combining 5 consecutive bit-numbered

groups and at the same time each column or row set

consists of 4 cell values. Every participating row or

Multi-Level Groupings of Minterms Using the Decimal-Valued Matrix Method 89

column in Level 3 group will consist of 4 equal set of

cell values, hough not in a specific order.

Particularly in minimization problem that has large

input-variables, a number of different levels of

groups will co-exist simultaneously in a matrix. To

visually distinguish other levels, different shape of

notation such as a diamond is being used.

In comparison to the Quine-McCluskey's method,

the matrix shown on Figure 4 is much more concise

and convenient since it depicts relationships between

every minterm numbers. If the Quine-McCluskey's

method is used for the Boolean function

å (0,4,8,12,16,20,22,24,28,32,36,40,41,44,48,52,56,60), more efforts
are required to recognize the relationships among minterm

values. It is much less instantaneous since some tracing of

minterm values are required by a user.

IV. Minterm Covering Process

Once different levels of symmetric groups are

identified, the next task is to find a minimum

number of prime implicants which can cover the

minterms. The process of covering minterms need to

start with identifying essential prime implicants.

Then, in general, we can start with the highest

symmetric groups to the lowest groups. The higher

the level, the more minterms the symmetric group

will be able to be cover.

In Figure 5, all the highlighted groups are

essential prime implicants, and their corresponding

minterms that the prime implicant can cover are

shown. The highest level in this figure is only 1.

Since Level 1 symmetric group consists of four cell

values as its members, the maximum number of

minterms that a single symmetric group can cover is 4.

Fig 5. Minterm Covering with Level 0
and Level 1 Groups

Using the cell values which belong to the

symmetric groups, minterms can be covered

vertically and horizontally. Once its minterms are

covered, it needs to be marked accordingly.

Occasionally redundancy can be formed in above

Level 1 type of grouping. Such redundancy can be

removed as shown in [13].

V. Conversion of Final Selection

At the end of the process, the final prime

implicant selection needs to be converted into a final

Boolean expression. For Figure 5 Boolean function

minimization problem å (0,1,2,3,8,9,13,15), the following
prime implicants must be selected:

(a) (1,0)1,(2,0)2,(3,1)2,(3,2)1

(b) (1,0)1,(9,1)8,(8,0)8,(9,8)1

(c) (15,13)

For each prime implication selection (a) to (c),

using the binary equivalent number, the following

two translation steps are required:

1. Determine the single most highest value by

examining all cell values inside the

parenthesis.

2. Intersect numbers outside of the parenthesis

and then mark with ‘x’ for every numbers that

have both 1’s.

Since a more detailed examples of conversion

90 Journal of The Korea Society of Computer and Information June 2012

process is provided in [13], the process of conversion

is rather briefly described here. For selection (b) the

highest value inside the parenthesis is 9 which is

equivalent to ‘1001’. The numbers outside of the

parenthesis are 1, 8, 8, and 1. Thus, both ‘0001’

(decimal number 1) and ‘1000’ (decimal number 8)

needs to intersect with ‘1001’ (decimal number 9).

By marking the intersected 1’s with an ‘x’ mark, the

result would be x00x. A Boolean equivalent

expression for x00x is C B .

After applying the same procedure for the

remaining selection (a) and (c), 00xx + x00x +

11x1 will be produced. By translating this

expression into an equivalent Boolean SOP

(sum-of-product) form, we have + C B + ABD . This

is the minimized solution for the Boolean function å
(0,1,2,3,8,9,13,15).

VI. Multi-Level Covering Process

In order to cover minterms, a proper selection of

prime implicants from multi-level groups is

necessary. The minterm covering process needs to

be illustrated with slightly more complex example.

Figure 6 is based on Boolean function å
(0,1,2,3,4,8,9,10,11,12,13). Using Level 1 and Level 2 grouping,

the selected prime implicant group will be the following:

(a) (1,0)1, (2,0)2, (8,0)8, (3,1)2, (3,2)1, (11,3)8,

(9,1)8, (9,8)1, (11,9)2, (10,2)8, (10,8)2,

(11,10)1

(b) (4,0)4,(8,0)8,(12,4)8,(12,8)4

(c) (9,8)1,(13,9)4,(12,8)4,(13,12)1

The prime implicant group (a) is a Level 2 group.

The prime implicant group (b) and (c) are Level 1

groups. In this example, all of the groups (a), (b)

and (c) are essential prime implicants since every

group must be selected. Essential prime implicants

are ones that definitely appear in the final prime

implicant selection. If (a) was selected to cover

minterms on the top (1,2,8,11), and minterms on

the left side (0,3,9,10), then (b) and (c) can be

selected to cover the remaining minterms (4,12,13).

Essential prime implicants can be easily determined

by counting the number of row or columns that the

each level line up with minterms.

In general, after essential prime implicants are

selected, the highest group level can be selected to

cover minterms since it will cover more minterms. In

Figure 6, notice how the Level 1 group and the Level

2 group prime implicants appear differently in terms

of covering the minterms. Particularly, the Level 2

group consists of 3 cell values in its row and column,

where the Level 1 group consists of 2 in its row and

column.

For the all of prime implicant groups in SOP

form, Boolean expression B + D C + CA which is a solution

for the Boolean function å (0,1,2,3,4,8,9,10,11,12,13).
(a)

(b)

Note:

indicates a congruent cell value between two levels.

Fig 6. (a) Minterm Covering by Level 2 Group
(b) Minterm Covering by Level 1 Group

Referring back to Figure 4, the Level 3 group

Multi-Level Groupings of Minterms Using the Decimal-Valued Matrix Method 91

covers 16 minterms. The remaining minterms 22

and 42 have to be covered by the Level 0 groups,

which are (22,20) and (41,40). Because 22 and 41

can be covered solely by (22,20) and (41,40),

respectively, both of these cell values are the

essential prime implicants. If a minterm is covered

by Level 3 essential prime implicant, there will be a

total 4 cell values in one of its row or column. In

this example, since most rows and columns only

have 4 cell values in its row or column, the entire

Level 3 group is an essential prime implicant.

If a matrix contains a valid Level 3 grouping,

then the maximum number of minterms that a single

Level 3 group can cover is 16. Notice that the

matrix can be represented in Level 0, 1, 2, 3, or any

combination of these levels.

There are other pertinent minterm covering issues

such as cyclic prime implicants, which deals with

more than one possible solution. This topic is widely

provided in the literatures that discuss the

Quine-McCluskey's method [2][14][15][16]. These

issues will not be discussed in this paper, but the

basic difference from the Quine-McCluskey's

minterm covering strategies is that the number of

participating cell values are different in the DVM

method. Also, minterms which need to be covered

are on the left side and on the top side. Compared to

the Quine-McCluskey's method, because the

minterm covering process involves different numbers

of cells, for the DVM method, existing algorithms

that are based on the Quine-McCluskey's minterm

covering strategies have to be modified.

VII. Conclusion

Until now, this paper illustrated the techniques

to enhance the DVM method, primarily focusing on

the multi-level groupings of the combinable

minterm. For users, such a grouping support

provides necessary means to recognize inter-related

minterm patterns for a larger input variable

problem. Because each level provides a different

level of abstraction, a birds-eye view of entire

process is possible with this method. The approach

described in this paper could bring increased

productivity since a logic based design can easily

become highly complex. Besides requiring a software

based on the method, to become a viable tool, more

algorithms that are based on the DVM method are

also needed. In particular, detecting multiple levels

of symmetric groups and more minterm covering

strategies using the DVM method should be

investigated so that the minterm covering process

can be further optimized.

References

[1] M. Karnaugh, “A Map Method for Synthesis of

Combinational Logic Circuits,” Transactions of

the AIEE, Communications and Electronics, Vol.

72, pp. 593-599, 1953.

[2] E. J. McCluskey, “Minimization of Boolean

functions,” Bell System Tech. Journal, Vol. 35,

No. 5, pp. 1417–1444, 1956.

[3] R. E. Bryant, “Graph-based algorithms for

Boolean functions manipulation,” IEEE Trans.

on Computers, C-35, No 8, pp. 677-692, Aug.,

1986.

[4] O. Coudert and J. C. Madre, “Implicit and

incremental computation of primes and essential

primes of Boolean functions,” Proc. 29th DAC,

CA, USA, pp. 36-39, June 1992.

[5] R. L. Rudell, Logic Synthesis for VLSI Design,

Ph.D. Dissertation, UCB/ERL M89/49, 1989.

[6] F. Basciftci, "Simplification of Single-Output

Boolean Functions by Exact Direct Cover

Algorithm Based on Cube Algebra," EUROCON,

pp. 427-431, Sept. 2007.

[7] A. Dusa, "Enhancing Quine-McCluskey," 2007.

http://www.compasss.org/files/WPfiles/Dusa200

7a.pdf (Accessed: 9 February 2012).

[8] A. Dusa, " A Mathematical Approach to the

92 Journal of The Korea Society of Computer and Information June 2012

Boolean Minimization Problem," Quality &

Quantity, Vol. 44, No. 1, pp. 99-113. 2010.

[9] P. Fiser, P. Rucky, and I. Vanova, “Fast Boolean

Minimizer for Completely Specified Functions”,

Proc. 11th IEEE Design and Diagnostics of

Electronic Circuits and Systems Workshop 2008,

Bratislava, SK, pp. 122-127.

[10] J. Hlavicka and P. Fiser. "BOOM-A Heuristic

Boolean Minimizer," Computers and Artificial

Intelligence Vol. 22, No 1. pp. 19-51, 2003.

[11] P. W. C. Prasad, A. Beg, and A. K. Singh,

“Effect of Quine-McCluskey Simplification on

Boolean Space Complexity, IEEE Proceeding

2009 Conference on Innovative Technologies in

Intelligent Systems and Industrial

Applications, pp. 165-170, Monash University,

July, 2009.

[12] D. Toman and P. Fiser. "A SOP Minimizer for

Logic Functions Described by Many Product

Terms Based on Ternary Trees," In Proceedings

of 9th International Workshop on Boolean

Problems (IWSBP), 2010.

[13] E. Kim. “A Visual-Based Logic Minimization

Method,” Journal of the Korea Industrial

Information Systems Research, Vol. 16, No 5,

Dec., 2011.

[14] B. Holdsworth and C. Wood, Digital Logic

Design, 4th ed., Newnes, 2002.

[15] C. H. Roth, Jr., Fundamentals of Logic Design,

5th ed., Thomson Engineering, 2004.

[16] P. K. Lala, Principles of Modern Digital Design,

John Wiley & Sons, Inc., Hoboken, NJ, USA.,

2006.

[17] C. Umans, T. Villa, and A.L. Sangiovanni-Vincentelli,

"Complexity of Two-Level Logic Minimization," IEEE

Trans. on Computer-Aided Design of Integrated

Circuits and Systems. Vol. 25, No. 7, pp. 1230–

1246, 2006.

저 자 소 개

Eungi Kim (김은기)

1991: Indiana Univ. of Pennsylvania

학사 (Computer Science)

1993: Illinois State University 석사

(Applied Computer Science)

2012: University of North Texas

(Information Science) 박사학위취

득(예정)

현 재: 남서울대학교 정보통신공학과 외국

인교수

관심분야: Info. Retrieval, Logic Design

Email: eungikim68@daum.net

