DOI QR코드

DOI QR Code

Cloning and Sequence Analysis of the Cellobiohydrolase I Genes from Some Basidiomycetes

  • Chukeatirote, Ekachai (Institute of Excellence in Fungal Research, Mae Fah Luang University) ;
  • Maharachchikumbura, Sajeewa S.N. (Institute of Excellence in Fungal Research, Mae Fah Luang University) ;
  • Wongkham, Shannaphimon (Scientific & Technological Instruments Centre, Mae Fah Luang University) ;
  • Sysouphanthong, Phongeun (Institute of Excellence in Fungal Research, Mae Fah Luang University) ;
  • Phookamsak, Rungtiwa (Institute of Excellence in Fungal Research, Mae Fah Luang University) ;
  • Hyde, Kevin D. (Institute of Excellence in Fungal Research, Mae Fah Luang University)
  • Received : 2012.04.04
  • Accepted : 2012.05.05
  • Published : 2012.06.30

Abstract

Genes encoding the cellobiohydrolase enzyme (CBHI), designated as cbhI, were isolated from the basidiomycetes Auricularia fuscosuccinea, Pleurotus giganteus, P. eryngii, P. ostreatus, and P. sajor-caju. Initially, the fungal genomic DNA was extracted using a modified cetyltrimethyl ammonium bromide (CTAB) protocol and used as a DNA template. The cbhI genes were then amplified and cloned using the pGEM-T Easy Vector Systems. The sizes of these PCR amplicons were between 700~800 bp. The DNA sequences obtained were similar showing high identity to the cbhI gene family. These cbhI genes were partial consisting of three coding regions and two introns. The deduced amino acid sequences exhibited significant similarity to those of fungal CBHI enzymes belonging to glycosyl hydrolase family 7.

Keywords

References

  1. Bhat MK, Bhat S. Cellulose degrading enzymes and their potential industrial applications. Biotechnol Adv 1997;15: 583-620. https://doi.org/10.1016/S0734-9750(97)00006-2
  2. Sukumaran RK, Singhania RR, Pandey A. Microbial cellulases: production, applications and challenges. J Sci Ind Res 2005; 64:832-44.
  3. Berg B. Nutrient release from litter and humus in coniferous forest soils: a mini review. Scand J For Res 1986;1:359-69. https://doi.org/10.1080/02827588609382428
  4. Wood TM, McCrae SI. Synergism between enzymes involved in the solubilization of native cellulose. Adv Chem Ser 1979;181:181-209.
  5. Beguin P, Aubert JP. The biological degradation of cellulose. FEMS Microbiol Rev 1994;13:25-58. https://doi.org/10.1111/j.1574-6976.1994.tb00033.x
  6. Teeri TT. Crystalline cellulose degradation: new insight into the function of cellobiohydrolases. Trends Biotechnol 1997; 15:160-7. https://doi.org/10.1016/S0167-7799(97)01032-9
  7. Henrissat B. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 1991;280:309-16. https://doi.org/10.1042/bj2800309
  8. Edwards IP, Upchurch RA, Zak DR. Isolation of fungal cellobiohydrolase I genes from sporocarps and forest soils by PCR. Appl Environ Microbiol 2008;74:3481-9. https://doi.org/10.1128/AEM.02893-07
  9. Uusitalo JM, Nevalainen KM, Harkki AM, Knowles JK, Penttila ME. Enzyme production by recombinant Trichoderma reesei strains. J Biotechnol 1991;17:35-49. https://doi.org/10.1016/0168-1656(91)90025-Q
  10. Jia J, Dyer PS, Buswell JA, Peberdy JF. Cloning of the cbhI and cbhII genes involved in cellulose utilisation by the straw mushroom Volvariella volvacea. Mol Gen Genet 1999;261: 985-93. https://doi.org/10.1007/s004380051047
  11. Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW. Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA 1984;81:8014-8. https://doi.org/10.1073/pnas.81.24.8014
  12. Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: a laboratory manual. 2nd ed. New York: Cold Spring Harbor Laboratory; 1989.
  13. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997;25:3389-402. https://doi.org/10.1093/nar/25.17.3389
  14. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, et al. ClustalW and ClustalX version 2.0. Bioinformatics 2007;23:2947-8. https://doi.org/10.1093/bioinformatics/btm404
  15. Lee CC, Wong DW, Robertson GH. Cloning and characterization of two cellulase genes from Lentinula edodes. FEMS Microbiol Lett 2001;205:355-60. https://doi.org/10.1111/j.1574-6968.2001.tb10972.x
  16. Lee KM, Moon HJ, Kalyani D, Kim H, Kim IW, Jeya M, Lee JK. Characterization of cellobiohydrolase from a newly isolated strain of Agaricus arvencis. J Microbiol Biotechnol 2011;21:711-8. https://doi.org/10.4014/jmb.1102.02001
  17. Ohnishi Y, Nagase M, Ichiyanagi T, Kitamoto Y, Aimi T. Transcriptional regulation of two cellobiohydrolase encoding genes (cel1 and cel2) from the wood-degrading basidiomycete Polyporus arcularius. Appl Microbiol Biotechnol 2007;76: 1069-78. https://doi.org/10.1007/s00253-007-1090-x
  18. Armesilla AL, Thurston CF, Yague E. CEL1: a novel cellulose binding protein secreted by Agaricus bisporus during growth on crystalline cellulose. FEMS Microbiol Lett 1994;116:293-9. https://doi.org/10.1111/j.1574-6968.1994.tb06718.x
  19. Karunarathna SC, Yang ZL, Raspe O, Ko Ko TW, Vellinga EC, Zhao RL, Bahkali AH, Chukeatirote E, Degreef J, Callac P, et al. Lentinus giganteus revisited: new collections from Sri Lanka and Thailand. Mycotaxon 2011;118:57-71.
  20. Covert SF, Vanden Wymelenberg A, Cullen D. Structure, organization, and transcription of a cellobiohydrolase gene cluster from Phanerochaete chrysosporium. Appl Environ Microbiol 1992;58:2168-75.
  21. Yague E, Mehak-Zunic M, Morgan L, Wood DA, Thurston CF. Expression of cel2 and cel4, two proteins from Agaricus bisporus with similarity to fungal cellobiohydrolase I and ${\beta}$-mannanase, respectively, is regulated by the carbon source. Microbiology 1997;143:239-44. https://doi.org/10.1099/00221287-143-1-239