DOI QR코드

DOI QR Code

Development and characterization of nine microsatellite loci from the Korean hare (Lepus coreanus) and genetic diversity in South Korea

  • Kim, Sang-In (Conservation Genome Resource Bank for Korean Wildlife (CGRB)) ;
  • An, Jung-Hwa (Conservation Genome Resource Bank for Korean Wildlife (CGRB)) ;
  • Choi, Sung-Kyoung (Conservation Genome Resource Bank for Korean Wildlife (CGRB)) ;
  • Lee, Yun-Sun (Conservation Genome Resource Bank for Korean Wildlife (CGRB)) ;
  • Park, Han-Chan (Conservation Genome Resource Bank for Korean Wildlife (CGRB)) ;
  • Kimura, Junpei (Laboratory of Veterinary Anatomy and Cell Biology) ;
  • Kim, Kyung-Seok (Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University) ;
  • Min, Mi-Sook (Conservation Genome Resource Bank for Korean Wildlife (CGRB)) ;
  • Lee, Hang (Conservation Genome Resource Bank for Korean Wildlife (CGRB))
  • Published : 2012.06.30

Abstract

The Korean hare, Lepus coreanus, is an important mammal in ecosystem food chains, and is distributed across the entire Korean peninsula and northeastern China. Polymorphic microsatellite loci were developed using the biotinenrichment technique for use in population genetics studies. Five trinucleotide and four dinucleotide microsatellite loci were selected and tested on 22 Korean hare specimens collected from Gangwon Province and Gyeongsangbuk Province in South Korea. The number of alleles across the two sampling regions ranged from three to nine with a mean of 6.1. Mean observed and expected heterozygosities and polymorphic information content were 0.540, 0.627 and 0.579, respectively. Only one locus, Lc06, showed departure from Hardy-Weinberg equilibrium after applying the Bonferroni correction. Four microsatellites, Lc01, Lc03, Lc12, and Lc19, satisfied the criteria to serve as a core set of markers recommended for population genetics studies. These new microsatellite markers will be widely applicable to future genetic studies for management and conservation of the Korean hare and related species, including assessment of the genetic diversity and population structure of L. coreanus.

Keywords

References

  1. An HS, Hong SW, Kim EM, Lee JH, Noh JK, Kim HC, Park CJ, Min BH, Myeong JI. 2010a. Comparative genetic diversity of wild and released populations of Pacific abalone Haliotis discus discus in Jeju, Korea, based on cross-species microsatellite markers including two novel loci. Anim Cells Syst. 14:305-313. https://doi.org/10.1080/19768354.2010.525813
  2. An J, Choi SK, Sommer J, Louis E, Brenneman R, Zemanova B, Hajkova P, Park G, Min MS, Kim KS, Lee H. 2010b. A core set of microsatellite markers for conservation genetics studies of Korean goral (Naemorhedus caudatus) and its cross-species amplification in Caprinae species. J Vet Sci. 11:351-353. https://doi.org/10.4142/jvs.2010.11.4.351
  3. Evanno G, Regnaut S, Goudet J. 2005. Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol. 14:2611-2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x
  4. Excoffier L, Laval G, Schneider S. 2005. Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evol Bioinf Online. 1:47-50.
  5. Feldhamer GA, Drickamer LC, Vessey SH, Merritt JF. 2007. Mammalogy: adaptation, diversity and ecology. Baltimore (MD): The Johns Hopkins University Press.
  6. Finke DL, Snyder WE. 2010. Conserving the benefits of predator biodiversity. Biol Conserv. 143:2260-2269. https://doi.org/10.1016/j.biocon.2010.03.022
  7. Flux JEC, Angermann R. 1990. The hares and jack rabbits. In: Chapman JA, Flux JEC, editors. Rabbits, hares, and pikas, status survey and conservation action plan. Switzerland: IUCN. p. 61-62.
  8. Hoffmann R, Smith AT. 2005. Lagomorphs. In: Wilson DE, Reeder DM, editors. Mammal species of the world. 3rd edn. Baltimore (MD): Johns Hopkins University Press. p. 185-211.
  9. Jones JK, Johnson DH. 1965. Synopsis of the lagomorphs and rodents of Korea. University of Kansas Publications. Museum of Natural History 16:357-407.
  10. Kalinowski ST, Taper ML, Marshall TC. 2007. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol. 16:1099-1106. https://doi.org/10.1111/j.1365-294X.2007.03089.x
  11. Kim KS, Sappington TW. 2004. Isolation and characterization of polymorphic microsatellite loci in the boll weevil, Anthonomus grandis Boheman (Coleoptera: Curculionidae). Mol Ecol Notes. 4:701-703. https://doi.org/10.1111/j.1471-8286.2004.00765.x
  12. Kim KS, Stolz U, Miller NJ, Waits ER, Guillemaud T, Sumerford DV, Sappington TW. 2008. A core set of microsatellite markers for western corn rootworm (Coleoptera: Chrysomelidae) population genetics studies. Environ Entomol. 37:293-300. https://doi.org/10.1093/ee/37.2.293
  13. Koh HS, Chun TY, Yoo HS, Zhang YP, Wang JX, Zhang MH, Wu CH. 2001. Mitochondrial cytb gene sequence diversity in the Korean hare, Lepus coreanus Thomas (Mammalia, Lagomorpha). Biochem Genet. 39:417-429. https://doi.org/10.1023/A:1013815720609
  14. Koh HS, Jang KH. 2010. Genetic distinctness of the Korean hare, Lepus coreanus (Mammalia, Lagomorpha), revealed by nuclear thyroglobulin gene and mtDNA control region sequences. Biochem Genet. 48:706-710.
  15. Melo-Ferreira J, Boursot P, Suchentrunk F, Ferrand N, Alves PC. 2005. Invasion from the cold past: extensive introgression of mountain hare (Lepus timidus) mitochondrial DNA into three other hare species in northern Iberia. Mol Ecol. 14:2459-2464. https://doi.org/10.1111/j.1365-294X.2005.02599.x
  16. Mukhopadhyay B, Bhattacharyya R. 2007. Modeling the role of constant and time varying recycling delay on an ecological food chain. Appl Math. 55:221-240.
  17. Oosterhout CV, Hutchinson WF, Wills DPM, Shipley PF. 2004. MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes. 4:535-538. https://doi.org/10.1111/j.1471-8286.2004.00684.x
  18. Peakall R, Smouse PE. 2006. Genalex 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes. 6:288-295. https://doi.org/10.1111/j.1471-8286.2005.01155.x
  19. Pritchard JK, Rosenberg NA. 1999. Use of unlinked genetic markers to detect population stratification in association studies. Am J Hum Genet. 65:220-228. https://doi.org/10.1086/302449
  20. Ronald JS, David VA, Franklin WL, O'Brien SJ, Johnson WE. 2000. Development of microsatellite markers in the guanaco, Lama guanicoe: utility for South American camelids. Mol Ecol. 9:1992-1924.
  21. Rousset F. 2008. GENEPOP'007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Resour. 8:103-106. https://doi.org/10.1111/j.1471-8286.2007.01931.x
  22. Rozen S, Skaletsky H. 2000. Primer3 on the WWW for general users and for biologist programmers. In: Misener S S., Krawetz SA, editors. Methods in molecular biology. Totowa: Humana Press. p. 365-386.
  23. Sarno RJ, David VA, Franklin WL, O'Brien SJ, Johnson WE 2000. Development of microsatellite markers in the guanaco, Lama guanicoe: utility for South American camelids. Mol Ecol. 9:1922-1924. https://doi.org/10.1046/j.1365-294x.2000.01077-3.x
  24. Slatkin M. 1996. A correction to the exact test based on the Ewens sampling distribution. Genet Res. 68:259-260. https://doi.org/10.1017/S0016672300034236
  25. Schuelke M. 2000. An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol. 18:233-234. https://doi.org/10.1038/72708
  26. Thulin CG, Tegelstrom H. 2002. Biased geographical distribution of mitochondrial DNA that passed the species barrier from mountain hares to brown hares (genus Lepus): an effect of genetic incompatibility and mating behaviour? J Zool Lond. 258:299-306. https://doi.org/10.1017/S0952836902001425
  27. Waltari E, Demoski JR, Klein D, Cook JA. 2004. A molecular perspective on the historical biogeography of the northern high latitudes. J Mammal. 85:601-610. https://doi.org/10.1644/BRB-204
  28. Weir BS, Cockerham CC. 1984. Estimating F-statistics for the analysis of population structure. Evolution. 38:1358-1370.
  29. Won C, Smith K. 1999. History and current status of mammals of the Korean Peninsula. Mammal Rev. 29:3-33. https://doi.org/10.1046/j.1365-2907.1999.00034.x
  30. Won CM, Yoo BH, Yang BG, Ra JC, Jeong JC, Koh HS. 2001. Wildlife survey. National Institute of Environmental Research.
  31. Won PO, Yoon MH, Han SH, Oh HS, Kim JK. 2004. The mammals of Korea. The Dongbang Media.
  32. Wu C, Wu J, Bunch TD, Li Q, Wang Y, Zhang Y. 2005. Molecular phylogenetics and biogeography of Lepus in eastern Asia based on mitochondrial DNA sequences. Mol Phylogenet Evol. 37:45-61. https://doi.org/10.1016/j.ympev.2005.05.006

Cited by

  1. Phylogeography of Korean raccoon dogs: implications of peripheral isolation of a forest mammal in East Asia vol.290, pp.3, 2012, https://doi.org/10.1111/jzo.12031