DOI QR코드

DOI QR Code

Influences of Addition of Jellyfish Powder to Bed Soil and Bacterial Community Structure of Bed Soil

해파리 분말의 상토 첨가물로서의 효과 및 상토의 미생물 군집 변화에 대한 연구

  • Beck, Bo-Ram (School of Life Science, Handong Global University) ;
  • Choi, Jae-Ho (School of Life Science, Handong Global University) ;
  • Kim, Young-Rok (School of Life Science, Handong Global University) ;
  • Cha, Ha-Eun (School of Life Science, Handong Global University) ;
  • Do, Hyung-Ki (School of Life Science, Handong Global University) ;
  • Hwang, Cher-Won (Global Leadership School, Handong Global University)
  • Received : 2012.01.30
  • Accepted : 2012.03.23
  • Published : 2012.04.30

Abstract

Recently, the population of toxic and/or unusable jellyfish is increasing during summer along the east coast of Korea, causing massive economical and ecological damage to fisheries, nuclear power plant and marine environment. To solve this problem, this study was carried out using jellyfish as a potential soil additive for horticulture. The jellyfish was solidified and homogenized, then mixed with a commercial bed soil. Allium tuberosum ROTH was planted to control bed soil (BS) and jellyfish powder mixed bed soil groups (Mixed bed soil, MBS), and following parameters were measured during five weeks: water content, electrical conductivity and growth of leaves. At the end of the experiment, bacterial community structures of each pot were analyzed by DGGE. The relative water adsorption of jellyfish powder was about 2.5 times greater compared to its dry weight. The water content of MBS group was significantly higher than BS group 6.5 to 14.2%, and the electric conductivity of MBS group was measured around 2.8 dS/m where BS group was resulted average of 1.8 dS/m. However, the leaves of BS group were grown 30% longer compared to MBS group. DGGE analysis of MBS group was shown in high number of phylum Bacteroidetes and increased diversity of Sphingobacteriia compared to BS group. Jellyfish powder as a soil additive surely will be a good candidate as humectant and microbiota stimulator, although there are several obstacles such as high electrical conductivity and residual alum salt which used for solidification of jellyfish.

해파리 분말을 추가함으로써 나타나는 화분 내의 수분 흡착력 및 유지력은 일반 상토보다 월등하고 이는 작물을 관리함에 있어 안정성과 건기 또는 단수로 인한 수분고갈을 예방할 수 있을 것으로 생각된다. 미생물의 경우 DGGE pattern과 염기서열 분석을 통해 확연한 군집변화를 유도하였으며, 식물과 공생관계에서 중요한 Bacteroidetes들의 다양성을 증가시키는 효과를 보았다. 이러한 긍정적인 면이 있지만, 해파리를 분말화하는 공정에 있어서 Potassium alum을 사용 한다는 것이 문제점으로 나타났다. 이 문제를 해결해야만 상품으로써의 가치가 더욱 높아지는데, 이는 해파리가 상토 첨가제로써의 역할도 충분히 할 수 있기 위해서는 phosphate가 inorganic phosphate으로 변환되는 것을 방지해야 하기 때문이다. 요약하자면, 본 실험을 통해 해파리의 잠재적인 자원력 및 고부가 가치화의 가능성은 충분히 나타났다고 생각한다. 이것이 가지는 의미는 식용으로 사용되는 해파리는 제한적이며 독성 해파리들은 거의 사용되지 않기 때문에, 산업적 측면에서 가용성 자원이 늘어난다는 것이다. 또한 환경개선적 측면에서, 독성 해파리률 포함한 해파리들은 여름철 (약 7~8월경)에 해수의 온도 상승과 관련하여 개체수가 급증하여 각 종 어장과 해수욕장에 피해를 주게 된다. 그렇기에 고부가 가치화가 이루어진다면 해파리의 출몰 시기와 이동경로를 예측하여 독성 및 식용불가 해파리들을 사전에 어획함으로써 해양관련 산업에 피해를 줄이고 어민들의 어획종이 늘어남과 동시에 해파리를 이용한 상품을 개발하는 데에 필요한 원자재 확보에도 도움이 될 것이라 생각한다.

Keywords

References

  1. Altschul, S.F., T.L. Madden, A.A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D.J. Lipman. 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucl. Acids Res. 25:3398-3402.
  2. Bugbee, G.J. and C.R. Frink. 1985. Alum sludge as a soil amendment: Effects on Soil Properties and Plant Growth. Bulletin 827. p.1-7. The Connecticut Agricultural Experiment Station, New Haven, CT, USA.
  3. Elia, A., F, Serio, A, Parente, P. Santamaria, and G.R. Rodriguez. 2001. Electrical conductivity of nutrient nolution, plant growth and fruit quality of soilless grown tomato. Acta. Hort. (ISHS) 559:503-508.
  4. Ezaki, T., S. Kohno, Y. Edashige, D.S. Cha, and K.W. Chun. 2008. Development of the revegetation material which using dried jellyfish (Nemopilema nomurai) powder. J. Jpn. Soc. Reveget. Tech. 34:195-198. https://doi.org/10.7211/jjsrt.34.195
  5. Friedman, S.P. 2005. Soil properties influencing apparent electrical conductivity: a review. Comput. Electron. Agric. 46:45-70. https://doi.org/10.1016/j.compag.2004.11.001
  6. Green, S.J., E. Inbar, F.C. Michel, Jr., Y. Hadar, and D. Minz. 2006. Succession of bacterial communities during early plant development: Transition from seed to root and effect of compost amendment. Appl. Environ. Microbiol. 72:3975-3983. https://doi.org/10.1128/AEM.02771-05
  7. Haichar, F.Z., C. Marol, O. Berge, J.I. Rangel-Castro, J.I. Prosser, J. Balesdent, T. Heulin, and W. Achouak. 2008. Plant host habitat and root exudates shape soil bacterial community structure. The ISME Journal 2:1221-1230. https://doi.org/10.1038/ismej.2008.80
  8. Hsieh, Y.H.P., F.M. Leong, and J. Rudloe. 2001. Jellyfish as food. Hydrobiologia 451:11-17. https://doi.org/10.1023/A:1011875720415
  9. Johansen, J.E. and S.J. Binnerup. 2002. Contribution of cytophaga-like bacteria to the potential of turnover of carbon, nitrogen, and phosphorus by bacteria in the rhizosphere of barley (Hordeum vulgare L.). Microb. Ecol. 43:298-306. https://doi.org/10.1007/s00248-002-2006-z
  10. Lee, S.E., H.K. Kim, S.M Kwon, H.J. Kim, R.B. Yoo, K.T. Baek, M.S. Lee, S.H Woo, M. Park, and K.Y. Chung. 2010. Effect of different levels of applications of illite on the growth of red pepper (Capsicum annuum L.) in bed soil. Korean J. Soil Sci. Fert. 43:852-857.
  11. Lia, Y.L., C. Stanghellini, and H. Challa. 2001. Effect of electrical conductivity and transpiration on production of greenhouse tomato (Lycopersicon esculentum L.) Sci. Horti. 88:11-29. https://doi.org/10.1016/S0304-4238(00)00190-4
  12. Lim, C.H., H.Y. Park, Y.G. Kim, and J.I. Park. 2008. Development of continuous water-removing tool from jelly fish. Korean Intellectual Property Office, 10-1011390-0000.
  13. Marques, A.P.G.C., C. Pires, H. Moreira, A.O.S.S. Rangel, and P.M.L.Castro. 2010. Assessment of the plant growth promotion abilities of six bacterial isolates using Zea mays as indicator plant. Soil Biol. Biochem. 42:1229-1235. https://doi.org/10.1016/j.soilbio.2010.04.014
  14. Min, S.G., S.S. Park, and Y.H. Lee2. 2011. Comparison of soil microbial communities to different practice for strawberry cultivation in controlled horticultural land. Korean J. Soil Sci. Fert. 44:479-484. https://doi.org/10.7745/KJSSF.2011.44.3.479
  15. Moon, K.H., J.H. Joa, K.S. Choi, H.H. Seo, H.C. Lim, and H.N. Hyun. 2011. Calibrating capacitance sensor for determining water content of volcanic-ash soils. Korean J. Soil Sci. Fert. 44:331-336. https://doi.org/10.7745/KJSSF.2011.44.3.331
  16. Muyzer, G. 1999. DGGE/TGGE a method for identifying genes from natural ecosystems. Curr. Opin. Microbiol. 2:317-322. https://doi.org/10.1016/S1369-5274(99)80055-1
  17. Muyzer, G., E.C. De Waal, and A.G. Uitterlinden. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. App. Environ. Microbiol. 59:695-700.
  18. Uye, S. 2008 Blooms of the giant jellyfish Nemopilema nomurai: a threat to the fisheries sustainability of the East Asian Marginal Seas. Plankton Benthos Res. 3:125-131. https://doi.org/10.3800/pbr.3.125
  19. Von Sigler, W., C. Miniaci, and J. Zeyer. 2004. Electrophoresis time impacts the denaturing gradient gel electrophoresisbased assessment of bacterial community structure. J. Microbiol. Methods 57:17-22. https://doi.org/10.1016/j.mimet.2003.11.011
  20. Yang, C.H, T.K. Kim, J.H Ryu, S.B. Lee, S. Kim, N.H. Baek, W.Y. Choi, D.Y. Chung, and S.J. Kim. 2010. Effects of rice straw incorporation by cutting methods on soil properties and rice yield in a paddy field. Korean J. Soil Sci. Fert. 43:1047-1050.