DOI QR코드

DOI QR Code

Optimization of Ethanol Extraction Conditions for Functional Components from Lespedeza cuneata Using Response Surface Methodology

반응표면분석법을 이용한 야관문(Lespedeza cuneata) 기능성분의 에탄올 추출조건 최적화

  • Kim, Dae-Ik (Biohealth convergence Center, Daegu Technopark) ;
  • Hong, Joo-Heon (Department of Food Science and Technology, Catholic University of Daegu)
  • 김대익 ((재)대구테크노파크 바이오헬스융합센터) ;
  • 홍주헌 (대구가톨릭대학교 식품가공학전공)
  • Published : 2012.06.30

Abstract

This study was conducted to monitor the quality characteristics of Lespedeza cuneata ethanolic extracts, by a response surface methodology. The independent variables were the extraction temperature ($35{\sim}95^{\circ}C}$), extraction time (2~10 hr), and ethanol concentration (10~90%). The coefficients of the determinations (R2) were 0.8562 (p<0.1), 0.9787 (p<0.01), and 0.8344 (p<0.1) in total polyphenol, total flavonoid, and electron donating ability, respectively. The electron donating ability and nitrite scavenging effect were improved with an increase of ethanol concentration, rather than the extraction temperature. ORAC (Oxygen Radical Absorbance Capacity) with extraction conditions was 1,636.47~2,696.99 ${\mu}moles$ TE/g, and was increased with the increase of extraction temperature and 40~60% of ethanol concentration. Estimated conditions for the maximized extraction including the yield, total polyphenol, electron donating ability, nitrite scavenging effect, and ORAC, were $60{\sim}68^{\circ}C$ in extraction temperature, 6~7 hr in extraction time, and 38~60% in ethanol concentration.

본 실험은 반응표면분석법을 이용하여 야관문 에탄올 추출물의 기능성분에 대한 추출조건을 최적화하였다. 추출조건에 따른 수율의 최대값은 17.6%이었고, 중심합성계획에 의한 야관문의 추출조건별 총 폴리페놀 및 총플라보노이드 함량에 대한 반응표면 회귀식의 $R^2$는 각각 0.8562와 0.9787로 10% 및 1%이내의 유의수준에서 유의성이 인정되었다. 야관문 에탄올 추출물의 폴리페놀 및 플라보노이드 함량 변화는 추출온도와 추출시간보다는 에탄올 농도에 크게 영향을 받고 있는 것으로 나타났다. 전자공여능에 대한 회귀식의 $R^2$는 0.8344로 10% 이내의 유의수준에서 유의성이 인정되었다. pH 조건에 따른 야관문의 아질산염 소거능에서 최대점을 보인 pH 3.0에서는 추출온도가 증가할수록 에탄올 농도 범위가 40~60% 범위에서 우수함을 확인하였다. ORAC은 1,636.47~2,696.99 ${\mu}moles$ TE/g의 범위였으며, 결과에 대한 반응표면 회귀식의 $R^2$는 0.8383로 10%이내의 유의수준에서 인정되었고 추출온도보다는 추출시간과 에탄올 농도에 영향을 받는 것으로 나타났다. 야관문의 추출조건을 최적화하기 위하여 추출물의 특성인 조건별 추출물의 수율, 총 폴리페놀함량, 전자공여능, 아질산염 소거능 및 ORAC에 대해 contour map을 superimposing하여 얻은 최적조건의 범위는 추출온도 $78{\sim}85^{\circ}C$, 추출시간 6~7시간, 에탄올 농도 38~60%이었다.

Keywords

References

  1. AOAC. 1990. Official methods of analysis 15th ed. Association of Official Analytical Chemists. Washington, DC, USA.
  2. Atsushi N, Nazuko H. 1980. C-Glycosylflavones in Lespedeza cuneata. Chem Pharm Bull 28:964-965 https://doi.org/10.1248/cpb.28.964
  3. Blois MS. 1958. Antioxidant determination by the use of a stable free radical. Nature 26:1199-1204
  4. Choi JS, Cho CS, Kim CJ. 2010. Cytoprotective effect of Lespedeza cuneata Extract on glucose toxicity. J Korean Oriental Med 31(4):79-100
  5. Davies R, Massey RC, McWeeny DJ. 1980. The catalysis of the N-nitrosamine of secondary amines by nitrosophenols. J Food Chem 6:115-122 https://doi.org/10.1016/0308-8146(80)90027-8
  6. Davis WB. 1947. Determination of flavonones in citrus fruits. Anal Chem 19:476 https://doi.org/10.1021/ac60007a016
  7. Fridovich I. 1989. Superoxide dismutase an adaption to paramagnetic gas. J Biol Chem 264: 7761-7762
  8. Gontard N, Guilbert S, Cuq JL. 1992. Edible wheat gluten films: Influence of the main process variables on film properties using response surface methodology. J Food Sci 57:190-196 https://doi.org/10.1111/j.1365-2621.1992.tb05453.x
  9. Gray JI, Dugan LR. 1975. Inhibition of N-nitrosamine formation in model food system. J Food Sci 40:981-984 https://doi.org/10.1111/j.1365-2621.1975.tb02248.x
  10. Halliwell B, Aruoma OJ. 1991. DNA damage by oxygen-derived species. FEBS Lett 281:9-19 https://doi.org/10.1016/0014-5793(91)80347-6
  11. Kang YH, Park YK, Lee GD. 1996. The nitrite scavenging and electron donating ability of phenolic compounds. Korean J Food Sci Technol 28(2):232-239
  12. Kim HK, Do JR, Hong JH, Lee GD. 2005. Optimization of extraction conditions for cabbage. J Korean Soc Food Sci Nutr 34(10):1625-1632 https://doi.org/10.3746/jkfn.2005.34.10.1625
  13. Kim JO, Kwon ST, Lee GD, Hong JH, Moon DH, Kim TW, Kim DI. 2008. Optimization of extraction condition on fig (Ficus carica L.) by response surface methodology. Korean J Food Preserv 15(1):66-73
  14. Kim SH, Kim YM. 2007. Determination of the antioxidant capacity of korean ginseng using an ORAC assay. J East Asian Soc Dietary Life 17(3):393-401
  15. Kim SJ, Kim DW. 2007. Antioxidative activity of hot water and ethanol extracts of Lespedeza cuneata seeds. Korean J Food Preserv 14(3):332-335
  16. Kim SM, Cho YS, Sung SK. 2001. The antioxidant ability and nitrite scavenging ability of plant extracts. Korean J Food Sci Technol 33(6):626-632
  17. Koh YJ, Cha DS, Choi HD, Park YK, Choi IW. 2008. Hot water extraction optimization of Dandelion leaves to increase antioxidant activity. Korean J Food Sci Technol 40(3): 283-289
  18. Lee DS, Jeong GS, An RB, Bin Li, Erisa B, Kim YC. 2008. Search for plant extracts with protective effects of pancreatic beta cell against oxidative stress. Kor J Pharmcogn 39(4):335-400
  19. Lee EJ, Kim JS, Kwon JH. 2008. Optimization of microwave-assisted extraction conditions for total catechin and electron donating ability of grape seed extracts. Korean J Food Preserv 15(6):840-846
  20. Lee GD, Lee JE, Kwon JH. 2000. Application of response surface methodology in food industry. Food Industry 33:33-45
  21. Min DL, Lim SK, Ahn JB, Choi YJ. 2010. Optimization of ethanol extraction conditions for antioxidants from Zizyphus jujuba Mill. leaves using response surface methodology. Korean J Food Sci Technol 42(6):733-738
  22. Noh KS, Yang MO, Cho EJ. 2002. Nitrite scavenging effect of Umbelliferaeceae. Korean J Soc Food Cookery Sci 18(1):8-12
  23. Park KJ, Lim JH, Kim BK, Jeong JW, Kim JC, Lee MH, Cho YS, Jung HY. 2009. Optimization of extraction conditions to obtain functional components from buckwheat(Fagopyum esculentum M.) sprouts, using response surface methodology. Korean J Food Preserv 16(5):734-741
  24. Park NY, Lee GD, Jeong YJ, Kwon JH. 1998. Optimization of extraction conditions for physicochemical properties of ethanol extracts from Chrysanthemum boreale. J Korean Soc Food Sci Nutr 27(4):585-590
  25. Prior RL, Hoang H, Gu L, Wu X, Bacchiocca M, Howard L, Hampsch-Woodill M, Huang D, Ou Jacorb R. 2003. Assays for hydrophlic and lipophilic antioxidant capacity oxygen radical absorbacie capacity (ORAC) caplasma and other biological and food samples. J Agri Food Chem 51:3273-3279 https://doi.org/10.1021/jf0262256
  26. Shelly H, Chung H, Lei Z, Jianrong L, Lee YW, Yumin D, Kequan Z. 2010. Antiproliferative and antioxidant properties of anthocyanin-rich extract from Acai. Food Chem 118:208-214 https://doi.org/10.1016/j.foodchem.2009.04.099
  27. Singleton VL, Rossi JA. 1965. Colorimetry of total phenolics with phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Viticult 16:144-158
  28. Talcott ST, Lee JH. 2002. Ellagic acid and flavonoid antioxidant content of mascadine wine and juice. J Agri Food Chem 50:3186-3192 https://doi.org/10.1021/jf011500u
  29. Yoon SR, Jeong YJ, Lee GD, Kwon JH. 2003. Changes in phenolic compounds properties of Rubi Fructus extract depending on extraction conditions. J Korean Soc Food Sci Nutr 32(3):338-345 https://doi.org/10.3746/jkfn.2003.32.3.338

Cited by

  1. Exploration of optimum conditions for production of saccharogenic mixed grain beverages and assessment of anti-diabetic activity vol.47, pp.1, 2014, https://doi.org/10.4163/jnh.2014.47.1.12
  2. Physiological activities of Lespedeza cuneata extracts vol.21, pp.6, 2014, https://doi.org/10.11002/kjfp.2014.21.6.844
  3. Effects of Lespedeza Caneata ethanol extract on the Liver, Kidneys of Lead administered Mice vol.17, pp.6, 2016, https://doi.org/10.5762/KAIS.2016.17.6.207
  4. Effect of Extraction Methods on Antioxidant Activities of Mori ramulus vol.43, pp.11, 2014, https://doi.org/10.3746/jkfn.2014.43.11.1709
  5. Optimization of a Process for Extraction of Petasin from Petasites japonicus Leaves by Response Surface Methodology vol.23, pp.11, 2013, https://doi.org/10.5352/JLS.2013.23.11.1360
  6. Extraction Conditions for Phenolic Compounds with Antioxidant Activities from White Rose Petals vol.58, pp.2, 2015, https://doi.org/10.3839/jabc.2015.021
  7. Physicochemical Characteristics and Biological Activities of Artemisia Argyi H. vol.24, pp.4, 2014, https://doi.org/10.5352/JLS.2014.24.4.377
  8. Optimization of Extraction Conditions for Mixture of Camellia sinensis L. and Artemisia argyi by Response Surface Methodology vol.31, pp.4, 2016, https://doi.org/10.13103/JFHS.2016.31.4.278
  9. 야관문(Lespedeza Caneata) Ethanol 추출물이 알코올 투여한 생쥐의 간장에 미치는 영향 vol.17, pp.10, 2012, https://doi.org/10.5762/kais.2016.17.10.432
  10. 반응표면분석법을 이용한 댕댕이 기능성성분의 마이크로웨이브추출조건 최적화 vol.24, pp.5, 2012, https://doi.org/10.11002/kjfp.2017.24.5.623
  11. 반응표면분석법을 이용한 새싹보리 마이크로웨이브 추출공정의 최적화 vol.24, pp.7, 2017, https://doi.org/10.11002/kjfp.2017.24.7.949
  12. 스피루리나(Spirulina platensis)로부터 미백과 주름개선 생리활성 물질 분리를 위한 초음파 추출공정 개발 vol.54, pp.3, 2012, https://doi.org/10.5657/kfas.2021.0271