DOI QR코드

DOI QR Code

Bacillus sp. CP-1 유래 subtilisin CP-1 생산에 있어 tryptic soy broth (TSB)와 Luria-Bertani(LB)배지가 미치는 영향 및 subtilisin CP-1의 특성

Effect of Tryptic Soy Broth (TSB) and Luria-Bertani (LB) Medium on Production of Subtilisin CP-1 from Bacillus sp. CP-1 and Characterization of Subtilisin CP-1

  • 박창수 (대구가톨릭대학교 식품가공학전공)
  • Park, Chang-Su (Department of Food Science and Technology, Catholic University of Daegu)
  • 투고 : 2012.04.04
  • 심사 : 2012.05.25
  • 발행 : 2012.06.30

초록

본 연구에서는 된장으로부터 혈전용해효소(subtilisin CP-1) 생산 균주를 단리하여 16S rRNA 유전자 분석과 생화학적 분석을 통하여 동정하여 Bacillus sp. CP-1로 명명하였으며, TSB와 LB 배지를 이용하여 혈전용해효소의 생산에 적합한 Bacillus sp. CP-1 배양 배지에 대하여 검토하였다. 그 결과 균주 생육과 균주 유래 전체 단백질의 생산에는 LB 배지가 더욱더 효과적임에 반해 높은 혈전용해효소 활성은 TSB 배지에서 Bacillus sp. CP-1 배양하였을 때 얻어졌다. Bacillus sp. CP-1의 배양 상층액의 fibrin zymography에 의한 분석에서 gel상의 상단 부분에 하나의 명확한 혈전용해 활성을 확인하였으며, 분자량은 약 29-30 kDa으로 추정되며, pH 9.0와 $45^{\circ}C$에서 최적의 효소활성을 보였다. 그리고, 기질 특이성 검토에 있어서는 chymotrypsin에 대한 특이적 기질인 Meo-Suc-Arg-Pro-Tyr-pNA (S-2586)에 대하여 가장 높은 기질 특이성을 나타내었다. Subtilisin CP-1단백질의 N-말단 염기 서열을 분석한 결과 처음 8개가 AQSVPYGI로 분석되었으며 이 배열은 subtilisin NAT및 E와 동일하였다.

A bacterial strain producing a fibrinolytic enzyme, subtilisin CP-1, was isolated from Doen-Jang, a Korean traditional fermentation food. Based on the analysis of gene sequence of 16S rRNA and biochemical analysis, the strain was identified as Bacillus sp. and named as Bacillus sp. CP-1. To investigate the effect of the medium on the production of fibrinolytic enzyme from Bacillus sp. CP-1, two commercial bacterial culture media, tryptic soy broth (TSB) and Luria-Bertani (LB), were applied to the cultivation of Bacillus sp. CP-1. The strain secreted only one proteolytic enzyme (subtilisin CP-1) in the culture broth. The molecular weight of subtilisin CP-1 was estimated to be 28 kDa. Subtilisin CP-1 was optimally active at pH 9.0 and $45^{\circ}C$, and exhibited high specificity for Meo-Suc-Arg-Pro-Tyr-pNA (S-2586), a synthetic chromogenic substrate for chymotrypsin. The first eight amino acid residues of the N-terminal sequence of the enzyme are AQSVPYGI; this sequence is identical to that of subtilisin NAT and E.

키워드

참고문헌

  1. Asrup, T. and Müllertz, S. 1952. The fibrin plate method for estimating fibrinolytic activity. Arch. Biochem. Biophys. 40, 346-351. https://doi.org/10.1016/0003-9861(52)90121-5
  2. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-252.
  3. Engelmann, S. and Hecker, M. 1996. Impaired oxidative stress resistance of Bacillus subtilis sigB mutants and the role of katA and katE. FEMS Microbiol. Lett. 145, 63-69. https://doi.org/10.1111/j.1574-6968.1996.tb08557.x
  4. Cheng, G., Zhao, P. X. and Tang, F. B. 2009. Identification and characterization of a novel spore-associated subtilase from Thermoactinomyces sp. CDF. Microbiology 155, 3661-3672. https://doi.org/10.1099/mic.0.031336-0
  5. Choi, N. S., Chung, D. M., Ryu, C. H., Yoon, K. S., Maeng, P. J. and Kim, S. H. 2006. Identification of three extracellular proteases from Bacillus subtilis KCTC 3014. J. Microbiol. Biotechnol. 16, 457-464.
  6. Holt, J. G., Krieg, N. R., Sneath, P. H. A., Staley, J. T. and Williams. S. T. 1994. Group 18: Endospore-forming Gram-positive rods and cocci, pp. 559-564. In Holt, J. G., Schleifer, K. H., Tully, J. G., Ursing, J., Bryant, M., Krieg,N. R., Liston, J., Moulder, J. W., Murray, R. G. E., Niven, C. F. and Pfenning, N. (eds.), Bergey's manual of systematic bacteriology, 9th ed. The Williams & Wilkins Co., Baltimore, Maryland, USA.
  7. Jaouadi, B., Ellouz-Chaabouni, S., Rhimi, M. and Bejar, S. 2008. Biochemical and molecular characterization of a detergent- stable serine alkaline protease from Bacillus pumilus CBS with high catalytic efficiency. Biochimie 90, 1291-1305. https://doi.org/10.1016/j.biochi.2008.03.004
  8. Jo, H. D., Lee, H. A., Jeong, S. J. and Kim, J. H. 2011. Purification and characterization of a major fibrinolytic enzyme from Bacillus amyloliquefaciens MJ5-41 isolated from Meju. J. Microbiol. Biotechnol. 21, 1166-1173. https://doi.org/10.4014/jmb.1106.06008
  9. Fakhfakh, N., Kanoun, S., Manni, L. and Nasri, M. 2009. Production and biochemical and molecular characterization of a keratinolytic serine protease from chicken feather- degrading Bacillus licheniformis RPk. Can. J. Microbiol. 55, 427-436. https://doi.org/10.1139/W08-143
  10. Kim, S. H., Choi, N. S. and Lee, W. Y. 1998. Fibrin zymography: a direct analysis of fibrinolytic enzyme on gels. Anal. Biochem. 263, 115-116. https://doi.org/10.1006/abio.1998.2816
  11. Kim, S. H. and Choi, N. S. 2000. Purification and characterization of subtilisin DJ-4 secreted by Bacillus sp. strain DJ-4 screened from Doen-Jang. Biosci. Biotechnol. Biochem. 64, 1722-1725. https://doi.org/10.1271/bbb.64.1722
  12. Kim, W., Choi, K., Kim, Y., Park, H., Choi, J., Lee, Y., Oh, H., Kwon, I. and Lee, S. 1996. Purification and characterization of a fibrinolytic enzyme produced from Bacillus sp. strain CK 11-4 screened from Chungkook-Jang. Appl. Environ. Microbiol. 62, 2482-2488.
  13. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685. https://doi.org/10.1038/227680a0
  14. Mantsala, P. and Zalkin, H. 1980. Extracellular and membrane-bound proteases from Bacillus subtilis. J. Bacteriol. 141, 493-501.
  15. Matsudaira, P. 1987. Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membrane. J. Biol. Chem. 262, 10035-10038.
  16. Nakamura, T., Yamagata, Y. and Ichishima, E. 1992. Nucleotide sequence of the subtilisin NAT gene, aprN, of Bacillus subtilis (natto). Biosci. Biotechnol. Biochem. 56, 1869-1871. https://doi.org/10.1271/bbb.56.1869
  17. Peng, Y., Huang, Q., Zhang, R. and Zhang, Y. 2003. Purification and characterization of a fibrinolytic enzyme produced by Bacillus amyloliquefaciens DC-4 screened from douchi, a traditional Chinese soybean food. Comp. Biochem. Physiol. Part B 134, 45-52.
  18. Prestidge, L., Gage, V. and Spizizen, J. 1971. Protease activities during the course of sporulation in Bacillus subtilis. J. Bacteriol. 107, 815-823.
  19. Sumi, H., Hamada, K., Nakanishi, K. and Hiratani, H. 1990. Enhancement of the fibrinolytic activity in plasma by oral administration of nattokinase. Acta Haematol. 84, 139-143. https://doi.org/10.1159/000205051
  20. Sumi, H., Hamada, H., Tsushima, H., Mihara, H. and Muraki, H. 1987. A novel fibrinolytic enzyme (nattokinase) in the vegetable cheese natto; a typical and popular soybean food in the Japanese diet. Experientia 43, 1110-1111. https://doi.org/10.1007/BF01956052
  21. Toyokawa, Y., Takahara, H., Reungsang, A., Fukuta, M., Hachimine, Y., Tachibana, S. and Yasuda, M. 2010. Purification and characterization of a halotolerant serine proteinase from thermotolerant Bacillus licheniformis RKK-04 isolated from Thai fish sauce. Appl. Microbiol. Biotechnol. 86, 1867-1875. https://doi.org/10.1007/s00253-009-2434-5

피인용 문헌

  1. Characteristics of Crude Protease from Fruits and Traditional Korean Fermentation Starters vol.42, pp.9, 2013, https://doi.org/10.3746/jkfn.2013.42.9.1461