DOI QR코드

DOI QR Code

A549 인체 폐암세포에서 piceatannol에 의한 apoptosis 유발과 NO 생성의 억제

Induction of Apoptosis and Inhibition of NO Production by Piceatannol in Human Lung Cancer A549 Cells

  • 최영현 (동의대학교 한의과대학 생화학교실, 대학원 바이오물질제어학과(BK21 Program), 항노화연구소 및 블루바이오소재개발센터)
  • Choi, Yung-Hyun (Department of Biochemistry, Dongeui University College of Oriental Medicine, Department of Biomaterial Control (BK21 program), Anti-Aging Research Center and Blue-Bio Industry RIC, Dongeui University)
  • 투고 : 2012.03.29
  • 심사 : 2012.04.10
  • 발행 : 2012.06.30

초록

Resveratrol 유도체의 일종으로 stilbene계열 물질인 piceatannol은 암세포의 증식을 억제하고 apoptosis를 유발하는 것으로 알려져 있다. 본 연구에서는 A549 인체 폐암세포를 대상으로 piceatannol에 의한 암세포 증식억제와 연관된 부가적인 기전연구를 실시하였다. 본 연구의 결과에서 piceatannol이 A549 세포에서 extrinsic 및 intrinsic pathway의 동시 활성을 통하여 apoptosis를 유발하였음을 Fas/FasL의 발현 증가와 caspase-8 및 -9의 활성증가로 확인하였다. 또한 piceatannol은 caspase-3의 활성을 증가시켰으며, caspase-3의 다양한 표적 단백질들의 발현 감소가 동반되었다. 아울러 piceatannol에 의한 apoptosis 유발 과정은 iNOS의 발현 감소에 의한 NO의 생성 억제와도 연관성이 있었다.

Piceatannol (trans-3,4,3',5'-tetrahydroxystilbene), a natural stilbene, is an analogue of resveratrol. Although recent experimental data have revealed the health benefit potency of piceatannol, the molecular mechanisms underlying the anti-cancer activity have not yet been studied in detail. In the present study, the further possible mechanisms by which piceatannol exerts its pro-apoptotic action in cultured human lung cancer A549 cells were investigated. Exposure of A549 cells to piceatannol resulted in growth inhibition and induction of apoptosis. Apoptosis induction of A549 cells by piceatannol showed correlation with proteolytic activation of caspase-3, -8, and -9, and concomitant degradation of activated caspase-3 target proteins such as poly (ADP-ribose) polymerase, phospholipase C-${\gamma}1$, ${\beta}$-catenin, and Inhibitor caspase-activated DNase. The increase in apoptosis by piceatannol treatment was also associated with an increase of pro-apoptotic Bax expression and decrease of anti-apoptotic Bcl-2 and Bcl-xL expression, and caused down-regulation of the inhibitor of apoptosis protein family members and up-regulation of Fas and Fas legend. In addition, piceatannol treatment markedly inhibited the expression of mRNA and proteins of inducible nitric oxide (NO) synthase, and the levels of NO production were progressively down-regulated by piceatannol treatment in a dose-dependent fashion. The results indicate that piceatannol may have therapeutic potential against human gastric cancer cells.

키워드

참고문헌

  1. Ashikawa K., Majumdar, S., Banerjee, S., Bharti, A. C., Shishodia, S. and Aggarwal, B.B. 2002. Piceatannol inhibits TNF-induced NF-$\kappa B$ activation and NF-$\kappa B$-mediated gene expression through suppression of $I \kappa B\alpha$ kinase and p65 phosphorylation. J. Immunol. 169, 6490-6497. https://doi.org/10.4049/jimmunol.169.11.6490
  2. Bae, S. S., Perry, D. K., Oh, Y. S., Choi, J. H., Galadari, S. H., Ghayur, T., Ryu, S. H., Hannun, Y. A. and Suh, P. G. 2000. Proteolytic cleavage of phospholipase C-gamma1 during apoptosis in Molt-4 cells. FASEB J. 14, 1083-1092.
  3. Barton, B. E., Karras, J. G., Murphy, T. F., Barton, A. and Huang, H. F. 2004. Signal transducer and activator of transcription 3 (STAT3) activation in prostate cancer: Direct STAT3 inhibition induces apoptosis in prostate cancer lines. Mol. Cancer Ther. 3, 11-20. https://doi.org/10.1186/1476-4598-3-11
  4. Bavaresco, L., Fregoni, C., Cantu, E. and Trevisan, M. 1999. Stilbene compounds: from the grapevine to wine. Drugs Exp. Clin. Res. 25, 57-63.
  5. Berridge, M. J. and Irvine, R. F. 1984. Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 312, 315-321. https://doi.org/10.1038/312315a0
  6. Brancolini, C., Lazarevic, D., Rodriguez, J. and Schneider, C. 1997. Dismantling cell-cell contacts during apoptosis is coupled to a caspase-dependent proteolytic cleavage of $\beta$-catenin. J. Cell Biol. 139, 759-771. https://doi.org/10.1083/jcb.139.3.759
  7. Enari, M., Sakahira, H., Yokoyama, H., Okawa, K., Iwamatsu, A and Nagata, S. 1998. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391, 43-50. https://doi.org/10.1038/34112
  8. Ferreira, M. J., Duarte, N., Gyemant, N., Radics, R., Cherepnev, G., Varga, A. and Molnar, J. 2006. Interaction between doxorubicin and the resistance modifier stilbene on multidrug resistant mouse lymphoma and human breast cancer cells. Anticancer Res. 26, 3541-3546.
  9. Ferrigni, N. R., McLaughlin, J. L., Powell, R. G. and Smith, Jr. C. R. 1984. Use of potato disc and brine shrimp bioassays to detect activity and isolate piceatannol as the antileukemic principle from the seeds of Euphorbia lagascae. J. Nat. Prod. 47, 347-352. https://doi.org/10.1021/np50032a019
  10. Galluzzi, L., Larochette, N., Zamzami, N. and Kroemer, G. 2006. Mitochondria as therapeutic targets for cancer chemotherapy. Oncogene 25, 4812-4830. https://doi.org/10.1038/sj.onc.1209598
  11. Geahlen, R. L. and McLaughlin, J. L. 1989. Piceatannol (3,4,3',5'-tetrahydroxy-trans-stilbene) is a naturally occurring protein-tyrosine kinase inhibitor. Biochem. Biophys. Res. Commun. 165, 241-245. https://doi.org/10.1016/0006-291X(89)91060-7
  12. Ghobrial, I. M., Witzig, T. E. and Adjei, A. A. 2005. Targeting apoptosis pathways in cancer therapy. CA Cancer J. Clin. 55, 178-194. https://doi.org/10.3322/canjclin.55.3.178
  13. Han, S. I., Kim, Y. S. and Kim, T. H. 2008. Role of apoptotic and necrotic cell death under physiologic conditions. BMB Rep. 41, 1-10. https://doi.org/10.5483/BMBRep.2008.41.1.001
  14. Hellmuth, M., Paulukat, J., Ninic, R., Pfeilschifter, J. and Mühl, H. 2004. Nitric oxide differentially regulates pro- and anti-angiogenic markers in DLD-1 colon carcinoma cells. FEBS Lett. 563, 98-102. https://doi.org/10.1016/S0014-5793(04)00275-3
  15. Hirst, D. G. and Robson, T. 2010. Nitrosative stress as a mediator of apoptosis: implications for cancer therapy. Curr. Pharm. Des. 16, 45-55. https://doi.org/10.2174/138161210789941838
  16. Javadov, S. and Karmazyn, M. 2007. Mitochondrial permeability transition pore opening as an endpoint to initiate cell death and as a putative target for cardioprotection. Cell. Physiol. Biochem. 20, 1-22. https://doi.org/10.1159/000103747
  17. Jeong, S. Y. and Seol, D. W. 2008. The role of mitochondria in apoptosis. BMB Rep. 41, 11-22. https://doi.org/10.5483/BMBRep.2008.41.1.011
  18. Jin, Z. and El-Deiry, W. S. 2005. Overview of cell death signaling pathways. Cancer Biol. Ther. 4, 139-163. https://doi.org/10.4161/cbt.4.2.1508
  19. Kaufmann, S. H., Desnoyers, S., Ottaviano, Y., Davidson, N. E. and Poirier, G. G. 1993. Specific proteolytic cleavage of poly(ADP-ribose) polymerase: an early marker of chemotherapy- induced apoptosis. Cancer Res. 53, 3976-3985.
  20. Kumari, A. L., Ali, A. M., Das, S., Pardhasaradhi, B. V., Varalakshmi, C. H. and Khar, A. 2005. Role of STAT3 and NF-$\kappa B$ signaling in the serum factor-induced apoptosis in AK-5 cells. Biochem. Biophys. Res. Commun. 336, 860-867. https://doi.org/10.1016/j.bbrc.2005.08.185
  21. Larrosa, M., Tomas-Barberan, F. A. and Espin, J. C. 2004. The grape and wine polyphenol piceatannol is a potent inducer of apoptosis in human SK-Mel-28 melanoma cells. Eur. J. Nutr. 43, 275-284. https://doi.org/10.1007/s00394-004-0471-5
  22. Lazebnik, Y. A., Kaufmann, S. H., Desnoyers, S., Poirier, G. G. and Earnshaw, W. C. 1994. Cleavage of poly (ADP-ribose) polymerase by a proteinase with properties like ICE. Nature 371, 346-347. https://doi.org/10.1038/371346a0
  23. Nakamoto, K., Kuratsu, J. and Ozawa, M. 2005. $\beta$-catenin cleavage in non-apoptotic cells with reduced cell adhesion activity. Int. J. Mol. Med. 15, 973-979.
  24. Nishizuka, Y. and Kikkawa, U. 2003. Early studies of protein kinase C: a historical perspective. Methods Mol. Biol. 233, 9-18.
  25. Okada, H. and Mak, T. W. 2004. Pathways of apoptotic and non-apoptotic death in tumour cells. Nat. Rev. Cancer 4, 592-603. https://doi.org/10.1038/nrc1412
  26. Pance, A. 2006. Nitric oxide and hormones in breast cancer: allies or enemies? Future Oncol. 2, 275-288. https://doi.org/10.2217/14796694.2.2.275
  27. Rao, C. V. 2004. Nitric oxide signaling in colon cancer chemoprevention. Mutat. Res. 555, 107-119. https://doi.org/10.1016/j.mrfmmm.2004.05.022
  28. Roupe, K., Teng, X. W., Fu, X., Meadows, G. G. and Davies, N. M. 2004. Determination of piceatannol in rat serum and liver microsomes: pharmacokinetics and phase I and II biotransformation. Biomed. Chromatogr. 18, 486-491. https://doi.org/10.1002/bmc.342
  29. Su, L. and David, M. 2000. Distinct mechanisms of STAT phosphorylation via the interferon-${\alpha}/{\beta}$ receptor. Selective inhibition of STAT3 and STAT5 by piceatannol. J. Biol. Chem. 275, 12661-12666. https://doi.org/10.1074/jbc.275.17.12661
  30. Wesche-Soldato, D. E., Swan, R. Z., Chung, C. S. and Ayala, A. 2007. The apoptotic pathway as a therapeutic target in sepsis. Curr. Drug Targets 8, 493-500. https://doi.org/10.2174/138945007780362764
  31. Widłak, P. 2004. The DFF40/CAD endonuclease and its role in apoptosis. Acta Biochim. Pol. 47, 1037-1044.
  32. Wieder, T., Prokop, A., Bagci, B., Essmann, F., Bernicke, D., Schulze-Osthoff, K., Dorken, B., Schmalz, H. G., Daniel, P. T. and Henze. G. 2001. Piceatannol, a hydroxylated analog of the chemopreventive agent resveratrol, is a potent inducer of apoptosis in the lymphoma cell line BJAB and in primary, leukemic lymphoblasts. Leukemia 15, 1735-1742. https://doi.org/10.1038/sj.leu.2402284
  33. Xu, M. H., Deng, C. S., Zhu, Y. Q. and Lin, J. 2003. Role of inducible nitric oxide synthase expression in aberrant crypt foci-adenoma-carcinoma sequence. World J. Gastroenterol. 9, 1246-1250.
  34. Yang, G. Y., Taboada, S. and Liao, J. 2009. Induced nitric oxide synthase as a major player in the oncogenic transformation of inflamed tissue. Methods Mol. Biol. 512, 119-156. https://doi.org/10.1007/978-1-60327-530-9_8

피인용 문헌

  1. Apoptotic Effect of Sasa quelpaertensis Nakai in Human Colon Cancer HT-29 Cells vol.24, pp.9, 2014, https://doi.org/10.5352/JLS.2014.24.9.1012
  2. Induction of Apoptosis by Piceatannol in YD-15 Human Oral Cancer Cells vol.44, pp.7, 2015, https://doi.org/10.3746/jkfn.2015.44.7.975