DOI QR코드

DOI QR Code

환경시료에 존재하는 미생물 배양을 위한 filter plate micro trap의 개발

Filter Plate Micro Trap as a Device for in situ Cultivation for Environmental Microorganisms

  • Jung, Da-Woon (Department of Environmental Science, Kangwon National University) ;
  • Ahn, Tae-Seok (Department of Environmental Science, Kangwon National University)
  • 투고 : 2012.01.18
  • 심사 : 2012.06.04
  • 발행 : 2012.06.30

초록

난배양성 미생물의 배양과 보다 다양한 미생물의 분리를 위하여 Filter plate microbial trap (FPMT)을 개발하였고, 이 장치를 사용하여 Greenland의 토양에서 세균을 분리하였다. FPMT는 배지와 하단부의 membrane filter(0.45 ${\mu}m$ pore size)로 구성되어 있다. 시료에 포함된 세균과 화학물질이 FPMT 내로 이동하고, 세균이 증식하는 원리이다. 그 결과, FPMT를 이용한 새로운 in situ 배양방법을 통해 통상적인 Petri dish 배양방법보다 더 많은 종과 기존의 방법으로는 배양할 수 없는 세균을 분리하였다. 이 장치는 앞으로 다양한 환경에서 난배양성 미생물을 분리하는데 유용함을 확인하였다.

Filter plate microbial trap (FPMT) was invented as an in situ cultivation device for the isolation of bacteria from natural environments. FPMT consists of a medium and membrane filters (0.45 ${\mu}m$ pore size) and microorganisms and compounds can be moved freely moved into the medium. This device was applied to two soil samples of Greenland. The microbial diversity of both soil samples by FPMT was higher than that by the conventional Petri dish-based method. Moreover, novel bacterial species were isolated by FPMT. The new FPMT is effective for in situ cultivation of natural samples and could be applicable to the isolation of uncultivable microorganism.

키워드

참고문헌

  1. Aagot, N., Nybroe, O., Nielsen, P. and Johnsen, K. 2001. An altered pseudomonas diversity is recovered from soil by using nutrient-poorpseudomonas-selective soil extract media. Appl. Environ. Microbiol. 67, 5233-5239. https://doi.org/10.1128/AEM.67.11.5233-5239.2001
  2. Amann, R. I., Ludwig, W. and Schleifer, K. H. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59, 143-169.
  3. Aoi, Y., Kinoshita, T., Hata, T., Ohta, H., Obokata, H. and Tsuneda, S. 2009. Hollow-fiber membrane chamber as a device for in situ environmental cultivation. Appl. Environ. Microbiol. 75, 3826-3833. https://doi.org/10.1128/AEM.02542-08
  4. Barer, M. R., Harwood, C. R. and Poole, R. K. 1999. Bacterial viability and culturability, pp. 93-137, Adv. Microb. Physiol., Academic Press.
  5. Bollmann, A., Lewis, K. and Epstein, S. S. 2007. Incubation of environmental samples in a diffusion chamber increases the diversity of recovered isolates. Appl. Environ. Microbiol. 73, 6386-6390. https://doi.org/10.1128/AEM.01309-07
  6. Bollmann, A., Palumbo, A. V., Lewis, K. and Epstein, S. S. 2010. Isolation and physiology of bacteria from contaminated subsurface sediments. Appl. Environ. Microbiol. 76, 7413-7419. https://doi.org/10.1128/AEM.00376-10
  7. Bruns, A., Cypionka, H. and Overmann, J. 2002. Cyclic amp and acyl homoserine lactones increase the cultivation efficiency of heterotrophic bacteria from the central baltic sea. Appl. Environ. Microbiol. 68, 3978-3987. https://doi.org/10.1128/AEM.68.8.3978-3987.2002
  8. Bruns, A., Nubel, U., Cypionka, H. and Overmann, J. 2003. Effect of signal compounds and incubation conditions on the culturability of freshwater bacterioplankton. Appl. Environ. Microbiol. 69, 1980-1989. https://doi.org/10.1128/AEM.69.4.1980-1989.2003
  9. Bussmann, I., Philipp, B. and Schink, B. 2001. Factors influencing the cultivability of lake water bacteria. J. Microbiol. Methods 47, 41-50. https://doi.org/10.1016/S0167-7012(01)00289-5
  10. Christen, R. 2008. Global sequencing: A review of current molecular data and new methods available to assess microbial diversity. Microbes Environ. 23, 253-268. https://doi.org/10.1264/jsme2.ME08525
  11. Connon, S. A. and Giovannoni, S. J. 2002. High-throughput methods for culturing microorganisms in very-low-nutrient media yield diverse new marine isolates. Appl. Environ. Microbiol. 68, 3878-3885. https://doi.org/10.1128/AEM.68.8.3878-3885.2002
  12. Davis, K. E., Joseph, S. J. and Janssen, P. H. 2005. Effects of growth medium, inoculum size, and incubation time on culturability and isolation of soil bacteria. Appl. Environ. Microbiol. 71, 826-834. https://doi.org/10.1128/AEM.71.2.826-834.2005
  13. Epstein, S. S. 2009. Microbial awakenings. Nature 457, 1083-1083. https://doi.org/10.1038/4571083a
  14. Ferrari, B. C., Binnerup, S. J. and Gillings, M. 2005. Microcolony cultivation on a soil substrate membrane system selects for previously uncultured soil bacteria. Appl. Environ. Microbiol. 71, 8714-8720. https://doi.org/10.1128/AEM.71.12.8714-8720.2005
  15. Handelsman, J. 2004. Metagenomics: Application of genomics to uncultured microorganisms. Microbiol. Mol. Biol. Rev. 68, 669-685. https://doi.org/10.1128/MMBR.68.4.669-685.2004
  16. Janssen, P. H., Yates, P. S., Grinton, B. E., Taylor, P. M. and Sait, M. 2002. Improved culturability of soil bacteria and isolation in pure culture of novel members of the divisions acidobacteria, actinobacteria, proteobacteria, and verrucomicrobia. Appl. Environ. Microbiol. 68, 2391-2396. https://doi.org/10.1128/AEM.68.5.2391-2396.2002
  17. Joseph, S. J., Hugenholtz, P., Sangwan, P., Osborne, C. A. and Janssen, P. H. 2003. Laboratory cultivation of widespread and previously uncultured soil bacteria. Appl. Environ. Microbiol. 69, 7210-7215. https://doi.org/10.1128/AEM.69.12.7210-7215.2003
  18. Kaeberlein, T., Lewis, K. and Epstein, S. S. 2002. Isolating "Uncultivable" Microorganisms in pure culture in a simulated natural environment. Science 296, 1127-1129. https://doi.org/10.1126/science.1070633
  19. Lin, C. C. and Casida, L. E. 1984. Gelrite as a gelling agent in media for the growth of thermophilic microorganisms. Appl. Environ. Microbiol. 47, 427-429.
  20. Smith, B. and Wilson, J. B. 1996. A consumer's guide to evenness indices. Oikos 76, 70-82. https://doi.org/10.2307/3545749
  21. Song, J., Oh, H.-M. and Cho, J.-C. 2009. Improved culturability of sar11 strains in dilution-to-extinction culturing from the east sea, west pacific ocean. FEMS Microbiol. Lett. 295, 141-147. https://doi.org/10.1111/j.1574-6968.2009.01623.x
  22. Spellerberg, I. F. and Fedor, P. J. 2003. A tribute to claude shannon (1916-2001) and a plea for more rigorous use of species richness, species diversity and the 'shannon-wiener' index. Global Ecol. Biogeogr. 12, 177-179. https://doi.org/10.1046/j.1466-822X.2003.00015.x
  23. Stevenson, B. S., Eichorst, S. A., Wertz, J. T., Schmidt, T. M. and Breznak, J. A. 2004. New strategies for cultivation and detection of previously uncultured microbes. Appl. Environ. Microbiol. 70, 4748-4755. https://doi.org/10.1128/AEM.70.8.4748-4755.2004
  24. Streit, W. R. and Schmitz, R. A. 2004. Metagenomics-the key to the uncultured microbes. Curr. Opin. Microbiol. 7, 492-498. https://doi.org/10.1016/j.mib.2004.08.002
  25. Wagner, M., Nielsen, P. H., Loy, A., Nielsen, J. L. and Daims, H. 2006. Linking microbial community structure with function: Fluorescence in situ hybridization-microautoradiography and isotope arrays. Curr. Opin. Biotechnol. 17, 83-91. https://doi.org/10.1016/j.copbio.2005.12.006
  26. Watve, M., Shejval, V., Sonawane, C., Rahalkar, M., Matapurkar, A., Shouche, Y., Patole, M., Phadnis, N., Champhenkar, A., Damle, K., et al. 2000. The 'k' selected oligophilic bacteria: A key to uncultured diversity? Curr. Sci. 78, 1535-1542.