DOI QR코드

DOI QR Code

Improved Production Efficiencies of Various Adeno-Associated Virus (AAV) Serotypes and a Novel Universal AAV Titration Method

다양한 adeno-associated virus (AAV) 혈청형의 효율성 높은 생산법과 새로운 공통적 정량법 개발

  • Cho, Young-Hwa (Juseong Gene Therapy R&D Center, Juseong University) ;
  • Choi, Ye-Jin (Biologics Research Division, National Institute of Food and Drug Safety Evaluation, KFDA) ;
  • Yun, Jung-Hee (Juseong Gene Therapy R&D Center, Juseong University) ;
  • Kim, Nam-Hee (Biologics Research Division, National Institute of Food and Drug Safety Evaluation, KFDA) ;
  • Choi, Mi-Ra (Biologics Research Division, National Institute of Food and Drug Safety Evaluation, KFDA) ;
  • Choi, Young-Kook (Juseong Gene Therapy R&D Center, Juseong University) ;
  • Kim, Kyung-Hee (Juseong Gene Therapy R&D Center, Juseong University) ;
  • Lee, Young-Ill (School of Engineering, University of Suwon) ;
  • Lee, Beom-Jun (College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungbuk National University) ;
  • Park, Kee-Rang (Juseong Gene Therapy R&D Center, Juseong University)
  • 조영화 (주성대학교 주성유전자치료기술센터) ;
  • 최예진 (식품의약품안전평가원 생물의약품연구과) ;
  • 윤정희 (주성대학교 주성유전자치료기술센터) ;
  • 김남희 (식품의약품안전평가원 생물의약품연구과) ;
  • 최미라 (식품의약품안전평가원 생물의약품연구과) ;
  • 최영국 (주성대학교 주성유전자치료기술센터) ;
  • 김경희 (주성대학교 주성유전자치료기술센터) ;
  • 이영일 (수원대학교 공과대) ;
  • 이범준 (충북대학교 수의과대학) ;
  • 박기랑 (주성대학교 주성유전자치료기술센터)
  • Received : 2012.03.20
  • Accepted : 2012.05.15
  • Published : 2012.06.30

Abstract

Adeno-associated virus (AAV) has been considered to be a very safe and efficient gene delivery system. However, the major obstacles to therapeutic usage of AAV have been to achieve highly efficient and reproducible production processes, and also to develop a reliable quantifying method of various serotypes with a simple protocol. We compared the efficiency of the conventional production protocol of AAV2 and adenovirus (Ad) co-infection to that of a new method containing AAV2 infection followed by pHelper transfection. We tested HEK293 and 293T, and further examined the time-dependent changes of AAV2 production. The new method of AAV2 and pHelper DNA gave about ten times higher production efficiency than that of the conventional protocol. The highest production efficiency in 293T was achieved as $1.61{\times}10^5$ virus genomes (v.g.)/cell by the new method of 10 MOI of AAV2 infection and 5 days post-infection. This protocol of the highest efficiency was then applied to produce various AAV serotypes and showed the efficiencies higher than $10^5$ v.g./cell. Next, we designed the universal PCR primers of highly conserved regions for various AAV serotypes to develop a simple and reliable titration method. The universal primers could amplify all the tested AAV serotypes with similar sensitivities by ten molecular copies. Therefore, this pair of universal primers can be further utilized to detect AAV contaminants in therapeutic adenoviral vectors.

AAV는 매우 안전하고 효율적인 유전자전달방법으로 인정되어 왔다. 그러나, AAV가 가진 생물의약품으로서 단점은 효율적이고 재현성 높은 생산법이 취약하고, 또한 다양한 혈청형을 간단한 한 가지 공통적 방법으로 신뢰성 있게 정량하는 방법이 개발되어야 하는 것이다. 따라서, 본 연구에서는 AAV2와 아데노바이러스를 동시에 감염하는 종래의 생산법에 의한 효율성과 새로운 생산법, 즉 AAV2 감염 후 pHelper 플라스미드를 transfection 하는 방법을 통한 생산효율성을 비교하였고, HEK293과 293T를 생산세포주로 하여 시간에 따른 생산효율성도 분석하였다. 그 결과 AAV2와 pHelper DNA를 포함한 새로운 생산법은 기존의 방법에 비해 10배 이상 높은 생산효율성을 보였고, 293T에서 AAV2를 10 MOI로 감염한 후 5일째에 가장 높은 생산효율성을 보였는데, 생산세포 한 개 당 $1.61{\times}10^5$ virus genomes (v.g.)을 생산하는 결과였다. 따라서 이 생산조건을 다른 혈청형 생산에 적용한 결과, 모든 혈청형에서 생산세포주 한 개 당 $10^5$ v.g. 이상을 생산하는 효율성을 보였다. 한편, 다양한 AAV 혈청형을 한 가지 공통적인 방법으로 정량하기 위해 the universal PCR 프라이머를 제작하였고, 그것을 이용하여 신뢰성 높고 10개 분자까지도 증폭이 가능한 결과를 모든 혈청형에서 얻었다. 그러므로 이 한 쌍의 정량용 the universal 프라이머는 임상시험용 아데노바이러스벡터에 존재하는 AAV오염을 검출하는 것에도 사용 가능하다.

Keywords

References

  1. Atchison, R. W., Casto, B. C. and Hammon, W. M. 1965. Adenovirus-Associated Defective Virus Particles. Science 149, 754-756. https://doi.org/10.1126/science.149.3685.754
  2. Aucoin, M. G., Perrier, M. and Kamen, A. A. 2008. Critical assessment of current adeno-associated viral vector production and quantification methods. Biotechnol. Adv. 26, 73-88. https://doi.org/10.1016/j.biotechadv.2007.09.001
  3. Bantel-Schaal, U. and zur Hausen, H. 1984. Characterization of the DNA of a defective human parvovirus isolated from a genital site. Virology 134, 52-63. https://doi.org/10.1016/0042-6822(84)90271-X
  4. Blouin, V., Brument, N., Toublanc, E., Raimbaud, I., Moullier, P. and Salvetti, A. 2004. Improving rAAV production and purification: towards the definition of a scalable process. J. Gene Med. 6, S223-228. https://doi.org/10.1002/jgm.505
  5. Buning, H., Perabo, L., Coutelle, O., Quadt-Humme, S. and Hallek, M. 2008. Recent developments in adeno-associated virus vector technology. J. Gene Med. 10, 717-733. https://doi.org/10.1002/jgm.1205
  6. Chen, C. and Okayama, H. 1987. High-efficiency transformation of mammalian cells by plasmid DNA. Mol. Cell Biol. 7, 2745-2752.
  7. Cho, Y. H., Park, H., Cho, E. S., Kim, W. J., Kang, B. S., Park, B. Y., Kim, Y. J., Lee, Y. I., Chang, S. I. and Park, K. 2007. A novel way of therapeutic angiogenesis using an adeno-associated virus-mediated angiogenin gene transfer. Exp. Mol. Med. 39, 412-418. https://doi.org/10.1038/emm.2007.46
  8. Clark, K. R., Voulgaropoulou, F., Fraley, D. M. and Johnson, P. R. 1995. Cell lines for the production of recombinant adeno- associated virus. Hum. Gene Ther. 6, 1329-1341. https://doi.org/10.1089/hum.1995.6.10-1329
  9. Clark, K. R. 2002. Recent advances in recombinant adeno- associated virus vector production. Kidney Int. 61, S9-15. https://doi.org/10.1046/j.1523-1755.2002.0610s1009.x
  10. Collaco, R. F., Cao, X. and Trempe, J. P. 1999. A helper virus- free packing system for recombinant adeno-associated virus vectors. Gene 238, 397-405. https://doi.org/10.1016/S0378-1119(99)00347-9
  11. Gao, G. P., Wilson, J. M. and Wivel, N. A. 2000. Production of recombinant adeno-associated virus. Adv. Virus Res. 55, 529-543 https://doi.org/10.1016/S0065-3527(00)55016-7
  12. Georg-Fries, B., Biederlack, S., Wolf, J. and zur Hausen, H. 1984. Analysis of proteins, helper dependence, and seroepidemiology of a new human parvovirus. Virology 134, 64-71. https://doi.org/10.1016/0042-6822(84)90272-1
  13. Grimm, D., Kern, A., Rittner, K. and Kleinschmidt, J. A. 1998. Novel tools for production and purification of recombinant adeno-associated virus vectors. Hum. Gene Ther. 10, 2745-2760.
  14. Grimm, D. and Kleinschmidt, J. A. 1999. Progress in adeno- associated virus type 2 vector production: promises and prospects for clinical use. Hum. Gene Ther. 10, 2445-2450. https://doi.org/10.1089/10430349950016799
  15. Hoggan, M. D., Blacklow, N. R. and Rowe, W. P. 1966. Studies of small DNA viruses found in various adenovirus preparations: physical, biological, and immunological characteristics. Proc. Natl. Acad. Sci. USA 55, 1467-1474. https://doi.org/10.1073/pnas.55.6.1467
  16. Kay, M. A., Manno, C. S., Ragni, M. V., Larson, P. J., Couto, L. B., McClelland, A., Glader, B., Chew, A. J., Tai, S. J., Herzog, R. W., Arruda, V., Johnson, F., Scallan, C., Skarsgard, E., Flake, A. W. and High, K. A. 2000. Evidence for gene transfer and expression of factor IX in haemophilia B patients treated with an AAV vector. Nat. Genet. 24, 257-261. https://doi.org/10.1038/73464
  17. Kohlbrenner, E., Aslanidi, G., Nash, K., Shklyaev, S., Campbell-Thompson, M., Byrne, B. J., Snyder, R. O., Muzyczka, N., Warrington, K. H. and Zolotukhin, S. 2005. Successful production of pseudotyped rAAV vectors using a modified baculovirus expression system. Mol. Ther. 12, 1217-1225.
  18. Kuck, D., Kern, A. and Kleinschmidt, J. A. 2007. Development of AAV serotype-specific ELISAs using novel monoclonal antibodies. J. Virol. Methods 140, 17-24. https://doi.org/10.1016/j.jviromet.2006.10.005
  19. Le, C. T., Gray, G. C. and Poddar, S. K. 2001. A modified rapid method of nucleic acid isolation from suspension of matured virus: applied in restriction analysis of DNA from an adenovirus prototype strain and a patient isolate. J. Med. Microbiol. 50, 571-574.
  20. Matthews, L. C., Gray, J. T., Gallagher, M. R. and Snyder, R. O. 2002. Recombinant adeno-associated viral vector production using stable packaging and producer cell lines. Methods Enzymol. 346, 393-413. https://doi.org/10.1016/S0076-6879(02)46068-5
  21. Mayginnes, J. P., Reed, S. E., Berg, H. G., Staley, E. M., Pintel, D. J. and Tullis, G. E. 2006. Quantitation of encapsidated recombinant adeno-associated virus DNA in crude cell lysates and tissue culture medium by quantitative, real-time PCR. J. Virol. Methods 137, 193-204. https://doi.org/10.1016/j.jviromet.2006.06.011
  22. Merten, O. W., Geny-Fiamma, C. and Douar, A. M. 2005. Current issues in adeno-associated viral vector production. Gene Ther. 12, S51-61. https://doi.org/10.1038/sj.gt.3302615
  23. Park, J. Y., Lim, B. P., Lee, K., Kim, Y. G. and Jo, E. C. 2006. Scalable production of adeno-associated virus type 2 vectors via suspension transfection. Biotechnol. Bioeng. 20, 416-430.
  24. Parks, W. P., Melnick, J. L., Rongey, R. and Mayor, H. D. 1967. Physical assay and growth cycle studies of a defective adeno-satellite virus. J. Virol. 1, 171-180.
  25. Qiao, C., Wang, B., Zhu, X., Li, J. and Xiao, X. 2002. A novel gene expression control system and its use in stable, high-titer 293 cell-based adeno-associated virus packing cell lines. J. Virol. 76, 13015-13027 https://doi.org/10.1128/JVI.76.24.13015-13027.2002
  26. Sommer, J. M., Smith, P. H., Parthasarathy, S., Isaacs, J., Vijay, S., Kieran, J., Powell, S. K., McClelland, A. and Wright, J. F. 2003. Quantification of adeno-associated virus particles and empty capsids by optical density measurement. Mol. Ther. 7, 122-128. https://doi.org/10.1016/S1525-0016(02)00019-9
  27. Transfiguracion, J., Jorio, H., Meghrous, J., Jacob, D. and Kamen, A. 2007. High yield purification of functional baculovirus vectors by size exclusion chromatography. J. Virol. Methods 142, 21-28. https://doi.org/10.1016/j.jviromet.2007.01.002
  28. Urabe, M., Ding, C. and Kotin, R. M. 2002. Insect cells as a factory to produce adeno-associated virus type 2 vectors. Hum. Gene Ther. 13, 1935-1943. https://doi.org/10.1089/10430340260355347
  29. Urabe, M., Nakakura, T., Xin, K. Q., Obara, Y., Mizukami, H., Kume, A., Kotin, R. M. and Ozawa, K. 2006. Scalable generation of high-titer recombinant adeno-associated virus type 5 in insect cells. J. Virol. 80, 1874-1885. https://doi.org/10.1128/JVI.80.4.1874-1885.2006
  30. Veldwijk, M. R., Topaly, J., Laufs, S., Hengge, U. R., Wenz, F., Zeller, W. J. and Fruehauf, S. 2002. Development and optimization of a real-time quantitative PCR-based method for the titration of AAV-2 vector stocks. Mol. Ther. 6, 272-278. https://doi.org/10.1006/mthe.2002.0659
  31. Yun, H. J., Cho, Y. H., Moon, Y., Park, Y. W., Yoon, H. K., Kim, Y. J., Cho, S. H., Lee, Y. I., Kang, B. S., Kim, W. J., Park, K. and Seo, W. 2008. Transcriptional targeting of gene expression in breast cancer by the promoters of protein regulator of cytokinesis 1 and ribonuclease reductase 2. Exp. Mol. Med. 40, 345-353. https://doi.org/10.3858/emm.2008.40.3.345