Terpenoids and Phenolics from Geum japonicum

뱀무로부터 테르페노이드 및 페놀성 성분의 분리

  • Yean, Min-Hye (Natural Products Research Institute and College of Pharmacy, Seoul National University) ;
  • Kim, Ju-Sun (Natural Products Research Institute and College of Pharmacy, Seoul National University) ;
  • Hyun, Yu-Jae (Department of Biochemistry, School of Medicine, Jeju National University) ;
  • Hyun, Jin-Won (Department of Biochemistry, School of Medicine, Jeju National University) ;
  • Bae, Ki-Hwan (College of Pharmacy, Chungnam National University) ;
  • Kang, Sam-Sik (Natural Products Research Institute and College of Pharmacy, Seoul National University)
  • 연민혜 (서울대학교 약학대학 천연물과학연구소) ;
  • 김주선 (서울대학교 약학대학 천연물과학연구소) ;
  • 현유재 (제주대학교 의학전문대학원 생화학교실) ;
  • 현진원 (제주대학교 의학전문대학원 생화학교실) ;
  • 배기환 (충남대학교 약학대학) ;
  • 강삼식 (서울대학교 약학대학 천연물과학연구소)
  • Received : 2012.05.23
  • Accepted : 2012.06.04
  • Published : 2012.06.30

Abstract

Twenty-five compounds were isolated from the methanolic extract of Geum japonicum (Rosaceae), and their structures were identified as eleven triterpenoids [ursolic acid 3-acetate (2), cecropiacic acid 3-methyl ester (3), pomolic acid 3-acetate (5), ursonic acid (6), ursolic acid (7), pomolic acid (8), corosolic acid (9), euscaphic acid (11), arjunic acid (16), tormentic acid (18), 23-hydroxytormentic acid (21)], two saponins [rosamultin (22) and kaji-ichigoside $F_1$ (23)], two megastigmanes [blumenol A (14) and (+)-dehydrovomifoliol (15)], three flavonoids [apigenin (13), isoquercitrin (17) and tiliroside (24)], two ellagic acid derivatives [3,3'-di-O-methylellagic acid (12) and ducheside B (25)] and five others [eugenol (1), emodin (4), vanillic acid (10), gallic aldehyde (19), salidroside (20)]. The chemical structures of these compounds were identified on the basis of spectroscopic methods and comparison with literature values. This is the first report of the eleven compounds, 2~6, 10, 15, 16, 20, 23, and 25 from the genus Geum, as well as the first report of apigenin (13) and 3,3'-di-O-methylellagic acid (12) from G. japonicum. The antioxidant properties of 22 isolates (1~11, 14, 16~25) were evaluated by the intracellular reactive oxygen species (ROS) radical scavenging using 2',7'-dichlorodihydrofluorescein diacetate (DCF-DA) assay. Among them, isoquercitrin (17) showed significant scavenging activity, and gallic aldehyde (19) and ducheside B (25) showed weak scavenging activity.

Keywords

References

  1. Cheng, X.-R., Jin, H.-Z., Qin, J.-J., Fu, J.-J. and Zhang, W.- D. (2011) Chemical constituent of plants from the genus Geum. Chem. Biodiv. 8: 203-222. https://doi.org/10.1002/cbdv.200900347
  2. Bae, K.-H. (2000) The medicinal plants of Korea, Kyo-Hak Publishing Co., Ltd., Seoul.
  3. Kang, K. A., Zhang, R., Piao, M. J., Chae, S.-W., Kim, H. S., Park, J. H., Jung, K. S. and Hyun, J. W. (2011) Baicalein inhibits oxidative stress-induced cellular damage via antioxidant effects. Toxicol. Ind. Health 1-10.
  4. Piao, M. J., Yoo, E. S., Koh, Y. S., Kang, H. K., Kim, J., Kim, Y. J., Kang, H. H. and Hyun, J. W. (2011) Antioxidant effects of the ethanol extract from flower of Camellia japonica via scavenging of reactive oxygen species and induction of antioxidant enzymes. Int. J. Mol. Sci. 12: 2618-2630. https://doi.org/10.3390/ijms12042618
  5. Lee, J. Y., Lee, E. J., Kim, J. S., Lee, J.-H. and Kang, S. S. (2011) Phytochemical Studies on Rehmanniae Radix Preparata. Kor. J. Pharmacogn. 42: 117-126.
  6. Kim, Y. H. and Kang, S. S. (1993) Triterpenoids from Rubi Fructus (Bogbunja). Arch. Pharm. Res. 16: 109-111. https://doi.org/10.1007/BF03036856
  7. Alves, J. S., de Castro, J. C. M., Freire, M. O., da-Cunha, E. V. L., Barbosa-Filho, J. M. and de Silva, M. S. (2000) Complete assignment of the $1^H$ and $^{13}C$-NMR spectra of four triterpenes of the ursane, artane, lupane and friedelane groups. Magn. Reson. Chem. 38: 201-206. https://doi.org/10.1002/(SICI)1097-458X(200003)38:3<201::AID-MRC622>3.0.CO;2-0
  8. Kriwacki, R. W. and Phil Pitner, T. (1989) Current aspects of practical two-dimensional (2D) nuclear magnetic resonance (NMR) spectroscopy: Applications to structure elucidation. Pharm. Res. 6: 531-554. https://doi.org/10.1023/A:1015941128608
  9. Min, B. S., Kim, Y. H., Lee, S. M., Jung, H. J., Lee, J. S., Na, M. K., Lee, C. O., Lee, J. P. and Bae, K.-H. (2000) Cytotoxic triterpenes from Crataegus pinnatifida. Arch. Pharm. Res. 23: 155-158. https://doi.org/10.1007/BF02975505
  10. Ibrahim, A., Khalifa, S. I., Khafagi, I., Youssef, D. T., Khan, S., Mesbah, M. and Khan, I. (2008) Microbial metabolism of biologically active secondary metabolites from Nerium oleander L. Chem. Pharm. Bull. 56: 1253-1258.
  11. Fraga, B. M., Diaz, C. E. and Quintana, N. (2006) Triterpenes from natural and transformed roots of Plocama pendula. J. Nat. Prod. 69: 1092-1094. https://doi.org/10.1021/np0680026
  12. Liang, G.-Y., Gray, A. I. and Waterman, P. G. (1989) Pentacyclic triterpenes from the fruits of Rosa sterilis. J. Nat. Prod. 52: 162-166. https://doi.org/10.1021/np50061a021
  13. Ye, L. and Yang, J. S. (1996) New ellagic glycosides and known triterpenoids from Duchesnea indica Focke. Acta Pharm. Sin. 31: 844-848.
  14. Kim, J. S., Yean, M. H., Lee, S. Y., Lee, J.-H. and Kang, S. S. (2009) Phytochemical Studies on Lonicerae Caulis (1) - Sterols and triterpenoids. Kor. J. Pharmacogn. 40: 319-325.
  15. Saimaru, H., Orihara, Y., Tansakui, P., Kang, Y.-H., Shibuya, M. and Ebizuka, Y. (2007) Production of triterpene acids by cell suspension cultures of Olea europaea. Chem. Pharm. Bull. 55: 784-788. https://doi.org/10.1248/cpb.55.784
  16. Xu, H.-X., Zeng, F.-Q. and Sim, K.-Y. (1996) Anti-HIV triterpene acids from from Geum japonicum. J. Nat. Prod. 59: 643-645. https://doi.org/10.1021/np960165e
  17. Zeng, F.-Q., Xu, H.-X., Sim, K.-Y., Gunsekera, R. M. and Chen, S.-X. (1998) The anticoagulant effects of Geum japonicum extract and its constituents. Phytother. Res. 12: 146-148. https://doi.org/10.1002/(SICI)1099-1573(199803)12:2<146::AID-PTR204>3.0.CO;2-5
  18. Shigenaga, S., Jouno, I. and Kawano, N. (1985) Triterpenoids and glycosides from Geum japonicum. Phytochemistry 24: 115-118. https://doi.org/10.1016/S0031-9422(00)80818-3
  19. Kang, S. S. and Son, K. H. (2000) Structure elucidation of natural products, Seoul National University Press, Seoul.
  20. Ming, D.-S., Jiang, R.-W., But, P. P.-H., Towers, G. H. N. and Yu, D.-Q. (2002) A new compound from Geum rivale L. J. Asian Nat. Prod. Res. 4: 217-220. https://doi.org/10.1080/10286020290024022
  21. Lontsi, D., Sondengam, B. L. and Ayafor, J. F. (1987) Cecropiacic acid, a new pentacyclic A-ring seco triterpenoid from Musanga cecropioides. Tetrahedron Lett. 28: 6683-6686. https://doi.org/10.1016/S0040-4039(00)96945-4
  22. Lontsi, D., Sondengam, B. L. and Ayafor, J. F. (1989) Chemical studies on the Cecropiaceae: a novel A-ring seco triterpene from Musanga cecropioides. J. Nat. Prod. 52: 52-56. https://doi.org/10.1021/np50061a005
  23. Ngounou, F. N., Lontsi, D., Sondengam, B. L., Tsoupras, M. G. and Tabacchi, R. (1990) Myrianthiphyllin, the first lignan cinnamate from Myrianthus arboreus. Planta Med. 56: 227-229. https://doi.org/10.1055/s-2006-960932
  24. Xu, Y.-Q., Yao, Z., Hu, J.-Y., Teng, J., Takaishi, Y. and Duan, H.-Q. (2007) Immunosuppressive terpenes from Princepia utilis. J. Asian Nat. Prod. Res. 9: 637-642. https://doi.org/10.1080/10286020600979589
  25. Guo, S., Duan, J. A., Tang, Y., Qian, Y., Zhao, J. and Qian, D. (2011) Triterpenoids from the fruits of Zizyphus jujuba var. spinosa. Biochem. System. Ecol. 39: 880-882. https://doi.org/10.1016/j.bse.2011.06.020
  26. Li, P.-L., Lin, C.-J., Zhang, Z.-X. and Jia, Z.-J. (2007) Three new triterpenoids from Potentilla multicaulis. Chem. Biodiv. 4: 17-24. https://doi.org/10.1002/cbdv.200790002
  27. Rao, G. S. R. S., Prasanna, S., Kumar, V. P. S. and Yadagiri, B. (1986) New triterpenes from Barringtonia speciosa Forst. Indian J. Chem. 25B: 113-122.
  28. Delgado, M. C. C., Da Silva, M. S. and Braz Fo, R. (1984) $3{\beta}$-Hydroxy-$21{\beta}$-E-cinnamoyloxyolean-12-en-28-oic acid. a triterpenoid from Enterolobium contorstisiliquum. Phytochemistry 23: 2289-2292. https://doi.org/10.1016/S0031-9422(00)80537-3
  29. Yeo, H., Park, S.-Y. and Kim, J. (1998) A-ring contracted triterpenoid from Rosa multiflora. Phytochemistry 48: 1399- 1401. https://doi.org/10.1016/S0031-9422(97)01006-6
  30. Anjaneyulu, A. S. R. and Rama Prasad, A. V. (1982) Chemical examination of the roots of Terminalia arjuna − The structures of arjunoside III and arjunoside IV, two new triterpenoid glycosides. Phytochemistry 21: 2057-2060. https://doi.org/10.1016/0031-9422(82)83042-2
  31. Seto, T., Tanaka, T., Tanaka, O. and Naruhashi, N. (1984) ${\beta}$- Glucosyl esters of $19{\alpha}$ -hydroxyursolic acid derivatives in leaves of Rubus species. Phytochemistry 23: 2829-2834. https://doi.org/10.1016/0031-9422(84)83023-X
  32. Xu, H.-X., Kadoda, S., Wang, H., Kurokawa, M., Shiraki, K., Mastumoto, T. and Namba, T. (1994) A new hydrolyzable tannin from Geum japonicum and its antiviral activity. Heterocycles 38: 167-175. https://doi.org/10.3987/COM-93-6550
  33. Li, J., Kadoda, S., Kawada, Y., Hattori, M., Xu, G.-J. and Namba, T. (1992) Constituents of the roots of Cynanchum bungei Decne. Isolation and strutures of four new glucoside, bungeiside-A, -B, -C, and -D. Chem. Pharm. Bull. 40: 3133- 3137. https://doi.org/10.1248/cpb.40.3133
  34. Husler, M. and Montag, A. (1989) Isolation, identification and quantitative determination of the norisoprenoid (S)-(+)- dehydrovomifoliol in honey. Z. Lebensm. Unters. Forsch. 189: 113-115. https://doi.org/10.1007/BF01332942
  35. Kai, H., Baba, M. and Okuyama, T. (2007) Two new megastigmanes from the leaves of Cucumis sativus. Chem. Pharm. Bull. 55: 133-136. https://doi.org/10.1248/cpb.55.133
  36. Kang, S. S. and Woo, W. S. (1982) Anthraquinones from the leaves of Polygonum sachalinense. Kor. J. Pharmacogn. 13: 7-9.
  37. Shin, K. H., Kang, S. S., Kim, H. J. and Shin, S. W. (1994) Isolation of an aldose reductase inhibitor from the fruits of Vitex rotundifolia. Phytomedicine 1: 145-147. https://doi.org/10.1016/S0944-7113(11)80033-4
  38. Pouchert, C. J. and Behnke, J. (1993) The Aldrich library of Vol. 43, No. 2, 2012 121 $^{13}C$ and $1^H$ FT NMR spectra, 967A. Ed. 1, Vol. 2, Aldrich Chemical Company, Inc.
  39. Kim, J. S., Kim, Y. J., Lee, J. Y. and Kang, S. S. (2008) Phytochemical Studies on Paeoniae Radix (2) - Phenolic and related compounds. Kor. J. Pharmacogn. 39: 28-36.
  40. Tanaka, N., Tanaka, T., Fujioka, T., Fujii, H., Mihashi, K., Shimomura, K. and Ishimaru, K. (2001) An ellagic compound and iridoids from Cornus capitata root cultures. Phytochemistry 57: 1287-1291. https://doi.org/10.1016/S0031-9422(01)00179-0
  41. Cheng, X.-R., Qin, J.-J., Zeng, Q., Zhang, S., Zhang, F., Yan, S.-K., Jin, H.-Z. and Zhang, W.-D. (2011) Taraxasterane-type triterpene and neolignans from Geum japonicum var. chinense F. Bolle. Planta Med. 77: 2061-2065. https://doi.org/10.1055/s-0031-1280091
  42. Shin, H. J., Lee, S. Y., Kim, J. S., Lee, S.-H., Choi, R. J., Chung, H. S., Kim, Y. S. and Kang, S. S. (2012) Sesquiterpenes and other constituents from Dendranthema zawadskii var. latilobum. Chem. Pharm. Bull. 60: 306-314. https://doi.org/10.1248/cpb.60.306
  43. Seo, H. K., Kim, J. S. and Kang, S. S. (2010) Labdane diterpenes and flavonoids from Leonurus japonicus. Helv. Chim. Acta 93: 2045-2051. https://doi.org/10.1002/hlca.201000043
  44. Murai, Y. and Iwashina, T. (2010) Flavonol glucuronides from Geum calthifolium var. nipponicum and Sieversia pentapetala (Rosaceae). Biochem. System. Ecol. 38: 1081-1082. https://doi.org/10.1016/j.bse.2010.10.012