J. Appl. Math. & Informatics Vol. **30**(2012), No. 3 - 4, pp. 665 - 676 Website: http://www.kcam.biz

ON FUZZY n-FOLD STRONG IDEALS OF BH-ALGEBRAS

EUN MI KIM AND SUN SHIN AHN*

ABSTRACT. Fuzzifications of the notion of n-fold strong ideals are considered. Characterizations of fuzzy n-fold strong ideals are given.

AMS Mathematics Subject Classification : 06F35, 03G25. Key words and phrases : (fuzzy, fuzzy strong, fuzzy n-fold strong) ideal, level n-fold strong ideal, BH-algebras.

1. Introduction

Y. Imai and K. Iséki introduced two classes of abstract algebras: BCKalgebras and BCI-algebras ([3,4]). It is known that the class of BCK-algebras is a proper subclass of the class of BCI-algebras. BCK-algebras have some connections with other areas: D. Mundici [7] proved MV-algebras are categorically equivalent to bounded commutative algebra, and J. Meng [8] proved that implicative commutative semigroups are equivalent to a class of BCK-algebras. Y. B. Jun, E. H. Roh, and H. S. Kim [5] introduced the notion of a BH-algebra, which is a generalization of BCK/BCI-algebras. They defined the notions of ideal, maximal ideal and translation ideal and investigated some properties. E. H. Roh and S. Y. Kim [10] estimated the number of BH^* -subalgebras of order i in a transitive BH^* -algebras by using Hao's method. S. S. Ahn and J. H. Lee ([2]) defined the notion of strong ideals in *BH*-algebra and studied some properties of it. They considered the notion of a rough set in BH-algebras. S. S. Ahn and E. M. Kim ([1]) introduced the notion of n-fold strong ideal in BH-algebra and gave some related properties of it. We also described the role of initial segments in BH-algebras.

In this paper, we consider the fuzzifications of the notion of n-fold strong ideals. We investigate some of their properties, and consider characterizations of fuzzy n-fold strong ideals. Using a family of n-fold strong ideals, we establish fuzzy n-fold strong ideals.

Received September 26, 2011. Accepted November 10, 2011. *Corresponding author. © 2012 Korean SIGCAM and KSCAM.

Eun Mi Kim and Sun Shin Ahn

2. Preliminaries

By a *BH*-algebra ([5]), we mean an algebra (X; *, 0) of type (2,0) satisfying the following conditions:

- (I) x * x = 0,
- (II) x * 0 = x,
- (III) x * y = 0 and y * x = 0 imply x = y, for all $x, y \in X$.

For brevity, we also call X a BH-algebra. In X we can define an order relation " \leq " by $x \leq y$ if and only if x * y = 0. A non-empty subset S of a BH-algebra X is called a *subalgebra* of X if, for any $x, y \in S$, $x * y \in S$, i.e., S is a closed under binary operation.

Definition 2.1 ([5]). A non-empty subset A of a BH-algebra X is called an *ideal* of X if it satisfies:

- (I1) $0 \in A$,
- (I2) $x * y \in A$ and $y \in A$ imply $x \in A, \forall x, y \in X$.

An ideal A of a BH-algebra X is said to be a *translation ideal* of X if it satisfies:

(I3) $x * y \in A$ and $y * x \in A$ imply $(x * z) * (y * z) \in A$ and $(z * x) * (z * y) \in A$, $\forall x, y, z \in X$.

Obviously, $\{0\}$ and X are ideals of X. For any elements x and y of a BHalgebra X, $x * y^n$ denotes $(\cdots ((x * y) * y) * \cdots) * y$ in which y occurs n times.

Definition 2.2. A non-empty subset A of a BH-algebra X is called a *strong ideal* ([2]) of X if it satisfies (I1) and

(I4) $(x * y) * z \in A$ and $y \in A$ imply $x * z \in A$ for all $x, y, z \in X$.

An ideal A of a BH-algebra X is called an *n-fold strong ideal* ([1]) of X if it satisfies (I1) and

(I5) for every $x, y, z \in X$ there exists a natural number n such that $x * z^n \in A$ whenever $(x * y) * z^n \in A$ and $y \in A$.

A mapping $f: X \to Y$ of *BH*-algebras is called a *homomorphism* if f(x*y) = f(x)*f(y) for all $x, y \in X$. For a homomorphism $f: X \to Y$ of *BH*-algebras, the *kernel* of f, denoted by kerf, defined to be the set

$$\ker f = \{ x \in X | f(x) = 0 \}.$$

Definition 2.3 ([10]). A *BH*-algebra X is called a *BH**-algebra if it satisfies the identity (x * y) * x = 0 for all $x, y \in X$.

Lemma 2.4. Let X be a BH^* -algebra. Then the following identity holds:

$$0 * x = 0, \forall x \in X.$$

Definition 2.5. A *BH*-algebra (X; *, 0) is said to be *transitive* if x * y = 0 and y * z = 0 imply x * z = 0 for all $x, y, z \in X$.

We now review some fuzzy logic concepts. A fuzzy set in a set X is a function $\mu: X \to [0,1]$. For a fuzzy set μ in X and $t \in [0,1]$, define $U(\mu;t)$ to be the set $U(\mu;t) = \{x \in X | \mu(x) \ge t\}$, which is called a *level subset* of μ .

Definition 2.6 ([6]). A fuzzy set μ in a *BH*-algebra X is called a *fuzzy BH*-*ideal* (here call it a *fuzzy ideal*) of X if

- (FI1) $\mu(0) \ge \mu(x), \forall x \in X,$
- (FI2) $\mu(x) \ge \min\{\mu(x * y), \mu(y)\}, \forall x, y \in X.$

A fuzzy set μ in a *BH*-algebra X is called a *fuzzy translation BH-ideal* of X if it satisfies (FI1), (FI2) and

(FI3) $\min\{\mu((x*z)*(y*z)), \mu((z*x)*(z*y))\} \ge \min\{\mu(x*y), \mu(y*x)\}, \forall x, y, z \in X.$

Definition 2.7. Let A and B be any two sets, μ be any fuzzy set in A and $f: A \to B$ be any function. Set $f^{-1}(y) = \{x \in A | f(x) = y\}$ for $y \in B$. The fuzzy set ν in B defined by

$$\nu(y) = \begin{cases} \forall \{\mu(x) \mid x \in f^{-1}(y)\} & \text{if } f^{-1}(y) \neq \emptyset \\ 0 & \text{otherwise} \end{cases}$$

for all $y \in B$, is called the *image* of μ under f and is denoted by $f(\mu)$.

Definition 2.8. Let A and B be any two sets, $f : A \to B$ be any function and ν be any fuzzy set in f(A). The fuzzy set μ in A defined by

$$\mu(x) = \nu(f(x))$$
 for all $x \in X$

is called the *preimage* of ν under f and is denoted by $f^{-1}(\nu)$.

3. Fuzzy ideals

Proposition 3.1. Let μ be a fuzzy ideal of a *BH*-algebra *X*. If $x \leq y$ for any $x, y \in X$, then $\mu(x) \leq \mu(y)$.

Proof. If $x \leq y$ for any $x, y \in X$, then x * y = 0. Hence, by (FI1) and (FI2), we have $\mu(x) \leq \min\{\mu(x * y), \mu(y)\} = \min\{\mu(0), \mu(y)\} = \mu(y)$.

Proposition 3.2. A fuzzy set μ in a *BH*-algebra X is a fuzzy ideal of X if and only if it satisfies (FI1) and

 $(\mathrm{FI2}') \ (\forall x,y,z\in X)((x\ast y)\ast z=0 \Rightarrow \mu(x)\geq \min\{\mu(y),\mu(z)\}).$

Proof. Let μ be a fuzzy ideal of X and let $x, y, z \in X$. Suppose that (x*y)*z = 0. Since μ is a fuzzy ideal, we have

$$\mu(x * y) \ge \min\{\mu((x * y) * z), \mu(z)\} \\= \min\{\mu(0), \mu(z)\} \\= \mu(z).$$

Hence $\mu(x) \ge \min\{\mu(x*y), \mu(y)\} \ge \min\{\mu(y), \mu(z)\}$. Therefore $\mu(x) \ge \min\{\mu(y), \mu(z)\}$.

Conversely, assume μ satisfies (FI1) and (FI2'). Since (x * y) * (x * y) = 0 for any $x, y \in X$, we have $\mu(x) \ge \min\{\mu(y), \mu(x * y)\}$ by (FI2'). Thus μ is a fuzzy ideal of X.

It is easy to prove by induction the following.

Proposition 3.3 Let μ be a fuzzy set satisfying (FI1) in a BH-algebra X. Then μ is a fuzzy ideal of X if and only if for any $x_1, \dots, x_n \in X(n \ge 2)$,

 $(\cdots(x*x_1)*\cdots)*x_n=0 \text{ implies } \mu(x) \ge \min\{\mu(x_1),\cdots,\mu(x_n)\}.$

The following two theorems give the homomorphic properties of fuzzy ideals.

Theorem 3.4. Let X and Y be BH-algebras and $f: X \to Y$ be a homomorphism and ν be a fuzzy ideal of Y. Then $f^{-1}(\nu)$ is a fuzzy ideal of X.

Proof. Let $x \in X$. Since $f(x) \in Y$ and ν is a fuzzy ideal of Y, $\nu(0) \ge \nu(f(x)) = (f^{-1}(\nu))(x)$ for any $x \in X$, but $\nu(0) = \nu(f(0)) = (f^{-1}(\nu))(0)$. Thus we get $(f^{-1}(\nu))(0) \ge \nu(f(x)) = (f^{-1}(\nu))(x)$ for any $x \in X$. Thus $f^{-1}(\nu)$ satisfies (FI1). Now let $x, y \in X$. Since ν is a fuzzy ideal of Y, we have

$$\nu(f(x)) \ge \min\{\nu(f(x) * f(y)), \nu(f(y))\}\$$

= min{\nu(f(x * y)), \nu(f(y))}

and hence $f^{-1}(\nu)(x) \ge \min\{f^{-1}(\nu)(x * y), f^{-1}(\nu)(y)\}$. Thus $f^{-1}(\nu)$ is a fuzzy ideal of X.

Lemma 3.5. Let X and Y be BH-algebras and let $f: X \to Y$ be a homomorphism and μ be a fuzzy ideal of X. Then, if μ is constant on $kerf = f^{-1}(0)$, then $f^{-1}(f(\mu)) = \mu$.

Proof. Let $x \in X$ and f(x) = y. Hence we have

$$f^{-1}(f(\mu))(x) = (f(\mu))(f(x))$$

= $(f(\mu))(y) = \lor \{\mu(a) | a \in f^{-1}(y)\}.$

For all $a \in f^{-1}(y)$, we obtain f(x) = f(a). Hence f(x * a) = 0, i.e., $x * a \in kerf$. Thus $\mu(x * a) = \mu(0)$. Therefore $\mu(x) \ge \min\{\mu(x * a), \mu(a)\} = \mu(a)$. Similarly, we have $\mu(a) \ge \mu(x)$. Hence $\mu(x) = \mu(a)$. Thus $f^{-1}(f(\mu))(x) = \vee\{\mu(a)|a \in f^{-1}(y)\} = \mu(x)$, i.e., $f^{-1}(f(\mu)) = \mu$.

Theorem 3.6 Let X and Y be BH-algebras and let $f : X \to Y$ be a surjective homomorphism and μ be a fuzzy ideal of X be such that ker $f \subseteq A_{\mu}$, where $A_{\mu} := \{x \in X | \mu(x) = \mu(0)\}$. Then $f(\mu)$ is a fuzzy ideal of Y.

Proof. Since μ is a fuzzy ideal of X and $0 \in f^{-1}(0)$, we have

$$(f(\mu))(0) = \lor \{\mu(a) | a \in f^{-1}(0)\}$$

= $\mu(0) \ge \mu(x) \text{ for any } x \in X$

Hence

$$(f(\mu))(0) \ge \lor \{\mu(x) | x \in f^{-1}(y)\}$$

= $(f(\mu))(y)$ for any $y \in Y$.

Thus $f(\mu)$ satisfies (FI1). Suppose that $(f(\mu))(x_B) < \min\{f(\mu)(y_B * x_B), f(\mu)(y_B)\}$ for some $x_B, y_B \in Y$. Since f is surjective, there exist $x_A, y_A \in X$ such that $f(x_A) = x_B$ and $f(y_A) = y_B$. Hence $f(\mu)(f(x_A)) < \min\{f(\mu)(f(y_A * x_A)), f(\mu)(f(y_A))\}$. Therefore

$$f^{-1}(f(\mu))(x_A) < \min\{f^{-1}(f(\mu))(y_A * x_A), f^{-1}(f(\mu))(y_A)\}.$$

Since ker $f \subseteq A_{\mu}$, μ is constant on ker f. Hence, by Lemma 3.5, we get $\mu(x_A) < \min\{\mu(x_A * y_A), \mu(y_A)\}$ which is a contradiction. Thus $f(\mu)$ is a fuzzy ideal of Y.

4. Fuzzy *n*-fold strong ideals

Definition 4.1. A fuzzy set μ in X is called a *fuzzy n-fold strong ideal* of X if it satisfies (FI1) and

(FI4) $\mu(x * z^n) \ge \min\{\mu((x * y) * z^n), \mu(y)\}$ for all $x, y, z \in X$, where n is a natural number.

Example 4.2. Let $X := \{0, 1, 2, 3\}$ be a *BH*-algebra([1]) with the following Cayley table:

Define a fuzzy set μ in X by $\mu(3) = 0.3$ and $\mu(x) = 0.7$ for all $x \neq 3$. Then μ is a fuzzy *n*-fold strong ideal of X.

A fuzzy set μ in a *BH*-algebra X is called a *fuzzy subalgebra* of X if $\mu(x * y) \ge \min\{\mu(x), \mu(y)\}$ for all $x, y \in X$.

Lemma 4.3. In a BH^* -algebra, every fuzzy ideal is a fuzzy subalgebra.

Proof. Since X is a BH^* -algebra, we have

$$\mu(x * y) \ge \min\{\mu((x * y) * x), \mu(x)\} \\= \min\{\mu(0), \mu(x)\} \\= \mu(x),$$

for all $x, y \in X$. Hence $\mu(x * y) \ge \min\{\mu(x), \mu(y)\}$ for all $x, y \in X$. Thus μ is a fuzzy subalgebra of X.

Theorem 4.4. In a BH-algebra, every fuzzy n-fold strong ideal is a fuzzy ideal.

Proof. Let μ be a fuzzy *n*-fold strong ideal of a *BH*-algebra *X*. Taking x := x, y := y and z := 0 in (FI4) and using (II), we get

$$\mu(x) = \mu(x * 0^{n})$$

$$\geq \min\{\mu((x * y) * 0^{n}), \mu(y)\}$$

$$= \min\{\mu(x * y), \mu(y)\}$$

for all $x, y \in X$. Hence μ is a fuzzy ideal of X.

Corollary 4.5. In a BH^* -algebra, every fuzzy *n*-fold strong ideal is a fuzzy subalgebra.

The converse of Corollary 4.5 is not be true as seen in the following example.

Example 4.6. Let $X = \{0, 1, 2, 3\}$ be a BH^* -algebra as in Example 4.2 and let μ be a fuzzy set in X given by

$$\mu(x) := \begin{cases} \alpha_1 & \text{if } x \in \{0, 2\}\\ \alpha_2 & \text{otherwise} \end{cases}$$

where $\alpha_1 > \alpha_2$ in [0, 1]. It is easy to show that μ is a fuzzy subalgebra of X. But μ is not a fuzzy *n*-fold strong ideal of X for every positive integer *n*, because $\mu(3 * 0^n) = \mu(3) = \alpha_2 < \alpha_1 = \min\{\mu((3 * 2) * 0^n), \mu(2)\}.$

Theorem 4.7. Let X and Y be BH-algebras and $f: X \to Y$ be a homomorphism and ν be a fuzzy *n*-fold strong ideal of Y. Then $f^{-1}(\nu)$ is a fuzzy *n*-fold strong ideal of X.

Proof. Let $x \in X$. Since $f(x) \in Y$ and ν is a fuzzy *n*-fold strong ideal of Y, $\nu(0) \geq \nu(f(x)) = (f^{-1}(\nu))(x)$, but $\nu(0) = \nu(f(0)) = (f^{-1}(\nu))(0)$ for any $x \in X$. Thus we get $(f^{-1}(\nu))(0) \geq \nu(f(x)) = (f^{-1}(\nu))(x)$ for any $x \in X$. Thus $f^{-1}(\nu)$ satisfies (FI1). Now let $x, y, z \in X$. Since ν is a fuzzy *n*-fold strong ideal of Y, we have

$$\nu(f(x) * f(z)^n) \ge \min\{\nu((f(x) * f(y)) * f(z)^n), \nu(f(y))\}\$$

= min{\nu(f((x * y) * z^n)), \nu(f(y))}

and so $\nu(f(x * z^n)) \ge \min\{\nu(f((x * y) * z^n)), \nu(f(y))\}$. Hence we get $f^{-1}(\nu)(x * z^n) \ge \min\{f^{-1}(\nu)((x * y) * z^n), f^{-1}(\nu)(y)\}$. Thus $f^{-1}(\nu)$ is a fuzzy *n*-fold strong ideal of X.

Proposition 4.8. Let A be a non-empty subset of a BH-algebra X, n be a positive integer and μ be a fuzzy set in X defined by

$$\mu(x) := \begin{cases} \alpha_1 & \text{if } x \in A \\ \alpha_2 & \text{otherwise} \end{cases}$$

where $\alpha_1 > \alpha_2$ in [0,1]. Then μ is a fuzzy *n*-fold strong ideal of X if and only if A is an *n*-fold strong ideal of X. Moreover, $X_{\mu} = A$, where $X_{\mu} := \{x \in X | \mu(x) = \mu(0)\}$.

670

Proof. Assume that μ is a fuzzy *n*-fold strong ideal of X. Since $\mu(0) \ge \mu(x)$ for all $x \in X$, we have $\mu(0) = \alpha_1$ and so $0 \in A$. Let $x, y, z \in X$ be such that $(x * y) * z^n \in A$ and $y \in A$. Using (FI4), we know that

$$\mu(x * z^{n}) \ge \min\{\mu((x * y) * z^{n}), \mu(y)\} = \alpha_{1}$$

and thus $\mu(x * z^n) = \alpha_1$. Hence $x * z^n \in A$, and A is an n-fold strong ideal of X.

Conversely, suppose that A is an n-fold strong ideal of X. Since $0 \in A$, it follows that $\mu(0) = \alpha_1 \ge \mu(x)$ for all $x \in X$. Let $x, y, z \in X$. If $y \notin A$ or $x * z^n \in A$, then we have

$$\mu(x \ast z^n) \ge \min\{\mu((x \ast y) \ast z^n), \mu(y)\}$$

Assume that $y \in A$ and $x * z^n \notin A$. Then by (I5), we have $(x * y) * z^n \notin A$. Therefore $\mu(x * z^n) = \alpha_2 = \min\{\mu((x * y) * z^n), \mu(y)\}$. Thus μ is a fuzzy *n*-fold strong ideal of X. Finally, we have

$$X_{\mu} = \{x \in X | \mu(x) = \mu(0)\} = \{x \in X | \mu(x) = \alpha_1\} = A.$$

This completes the proof.

Theorem 4.9. Let μ be a fuzzy set in a *BH*-algebra *X* and let *n* be a positive integer. Then μ is a fuzzy *n*-fold strong ideal of *X* if and only if the non-empty level set $U(\mu; \alpha)$ of μ is an *n*-fold strong ideal of *X*.

Proof. Suppose that μ is a fuzzy *n*-fold strong ideal of X and $U(\mu; \alpha) \neq \emptyset$ for any $\alpha \in [0, 1]$. Then there exists $x \in U(\mu; \alpha)$ and so $\mu(x) \geq \alpha$. It follows from (FI1) that $\mu(0) \geq \mu(x) \geq \alpha$ so that $0 \in U(\mu; \alpha)$. Let $x, y, z \in X$ be such that $(x * y) * z^n \in U(\mu; \alpha)$ and $y \in U(\mu; \alpha)$. Then by (FI4), we have

$$\mu(x * z^n) \ge \min\{\mu((x * y) * z^n), \mu(y)\}$$
$$\ge \min\{\alpha, \alpha\} = \alpha,$$

and thus $x * z^n \in U(\mu; \alpha)$. Hence $U(\mu; \alpha)$ is an *n*-fold strong ideal of X.

Conversely, assume that $U(\mu; \alpha) \neq \emptyset$ is an *n*-fold strong ideal of X for every $\alpha \in [0, 1]$. For any $x \in X$, let $\mu(x) = \alpha$. Then $x \in U(\mu; \alpha)$. Since $0 \in U(\mu; \alpha)$, it follows that $\mu(0) \ge \alpha = \mu(x)$ so that $\mu(0) \ge \mu(x)$ for all $x \in X$. Now we only to show that μ satisfies (FI4). If not, then there exist $a, b, c \in X$ such that

$$\mu(a * c^n) < \min\{\mu((a * b) * c^n), \mu(b)\}.$$

Taking $\alpha_0 = \frac{1}{2}(\mu(a * c^n) + \min\{\mu((a * b) * c^n), \mu(b)\})$, then we have

$$\mu(a * c^n) < \alpha_0 < \min\{\mu((a * b) * c^n), \mu(b)\}.$$

Hence $(a * b) * c^n \in U(\mu; \alpha_0)$ and $b \in U(\mu; \alpha_0)$, but $a * c^n \notin U(\mu; \alpha_0)$, which means that $U(\mu; \alpha_0)$ is not an *n*-fold strong ideal of X. This is a contradiction. Therefore μ is a fuzzy *n*-fold strong ideal of X.

Corollary 4.10. Let μ be a fuzzy set in a *BH*-algebra *X* and let *n* be a positive integer. Then μ is a fuzzy *n*-fold strong ideal of *X* if and only if $X_b := \{x \in X | \mu(x) \ge \mu(b)\}$ is an *n*-fold strong ideal of *X* for any $b \in X$.

Proof. Assume that X_b is an *n*-fold strong ideal of X for any $b \in X$. It is enough to show that $U(\mu; \alpha)$ is an *n*-fold strong ideal of X for any $\alpha \in [0, 1]$. Choose y's so that $\alpha \ge \mu(y)$. Then $\{x \in X | \mu(x) \ge \alpha\} = \bigcap_y \{x \in X | \mu(x) \ge \mu(y)\}$. By assumption, $U(\mu; \alpha)$ is a fuzzy *n*-fold strong ideal of X.

Conversely, by Theorem 4.9, it is easy to prove.

Corollary 4.11. If μ is a fuzzy *n*-fold strong ideal of X, then $X_{\mu} = \{x \in X | \mu(x) = \mu(0)\}$ is an *n*-fold strong ideal of X.

Theorem 4.12. Let μ be a fuzzy set in X satisfying (FI1). Then μ is a fuzzy *n*-fold strong ideal of X if and only if for every $t \in [0, 1]$ and every $x, y, z \in X$ such that $\mu(y * z^n) < t \leq \mu(x)$, we have $\mu((y * x) * z^n) < t$.

Proof. Assume that μ is a fuzzy *n*-fold strong ideal of *X*. Let $t \in [0,1]$ and $x, y, z \in X$ be such that $\mu(y * z^n) < t \leq \mu(x)$. Then $y * z^n \notin U(\mu; t)$ and $x \in U(\mu; t)$. If $(y * x) * z^n \in U(\mu; t)$, then $y * z^n \in U(\mu; t)$ because $U(\mu; t)$ is an *n*-fold strong ideal of *X* by Theorem 4.9. This is impossible, and so $(y * x) * z^n \notin U(\mu; t)$ which shows that $\mu((y * x) * z^n) < t$.

Conversely, suppose that $\mu((y * x) * z^n) < t$ for all $t \in [0, 1]$ and $x, y, z \in X$ satisfying $\mu(y * z^n) < t \leq \mu(x)$. Consider any level subset $U(\mu; s)$ of μ and let $a, b, c \in X$ be such that $(a * b) * c^n \in U(\mu; s)$ and $b \in U(\mu; s)$. Obviously, $0 \in U(\mu; s)$. If $a * c^n \notin U(\mu; s)$, then $\mu(a * c^n) < s \leq \mu(b)$, and so $\mu((a * b) * c^n) < s$ by assumption. This implies that $(a * b) * c^n \notin U(\mu; s)$, a contradiction. Hence $a * c^n \in U(\mu; s)$, and thus $U(\mu; s)$ is an *n*-fold strong ideal of X. By Theorem 4.9, μ is a fuzzy *n*-fold strong ideal of X. \Box

Theorem 4.13. Let $\{A_t | t \in T\}$ be a family of *n*-fold strong ideals of X such that

(i) $G = \bigcup_{t \in T} A_t$

(ii) s > t if and only if $A_s \subset A_t$ for all $s, t \in T$,

where T is a non-empty subset of [0,1], Define a fuzzy set μ in X by

 $\mu := \sup\{t \in T | x \in A_t\}.$

Then μ is a fuzzy *n*-fold strong ideal of X.

Proof. Using Theorem 4.9, it is sufficient to show that the non-empty level subset of μ is an *n*-fold strong ideal of X. Assume that $U(\mu; s)$ is non-empty, where $s \in [0, 1]$. Then either $s = \sup\{t \in T | t < s\}$ or $s \neq \sup\{t \in T | t < s\}$, i.e., either $s = \sup\{t \in T | A_s \subseteq A_t\}$ or $s \neq \sup\{t \in T | A_s \subseteq A_t\}$. In the first case, since $x \in U(\mu; s)$ if and only if $x \in A_t$ for all t < s if and only if $x \in \cup_{t < s} A_t$, we have $U(\mu; s) = \bigcup_{t < s} A_t$, which is an *n*-fold strong ideal of X.

The second case implies that there exists $\epsilon > 0$ such that $(s - \epsilon, s) \cap T$ is empty. If $x \in \bigcup_{t \geq s} A_t$, then $x \in A_t$ for some $t \geq s$, and hence $\mu(x) \geq t \geq s$. It follows that $x \in U(\mu; s)$ so that $\bigcup_{t \geq s} A_t \subseteq U(\mu; s)$. Now, if $x \notin \bigcup_{t \geq s} A_t$, then $x \notin A_t$ for all $t \geq s$. Hence $x \notin A_t$ for all $t > s - \epsilon$, i.e., if $x \in A_t$ then $t \leq s - \epsilon$. Thus $\mu(x) \leq s - \epsilon$, and therefore $x \notin U(\mu; s)$. This shows that $U(\mu; s) = \bigcup_{t \geq s} A_t$, which is an *n*-fold strong ideal of *X*. This completes the proof. Using a chain of *n*-fold strong ideals, we establish a fuzzy *n*-fold strong ideal.

Theorem 4.14. Let μ be a fuzzy set in X with $Im(\mu) = \{t_0, t_1, \dots, t_m\}$, where $t_0 > t_1 > \dots > t_m$ in [0, 1]. If $A_0 \subset A_1 \subset \dots \subset A_m = X$ is a chain of *n*-fold strong ideals of X such that $\mu(A_k - A_{k-1}) = t_k$ for $k = 0, 1, \dots, m$, where $A_{-1} := \emptyset$, then μ is a fuzzy *n*-fold strong ideal of X.

Proof. Obviously, $\mu(0) \ge \mu(x)$ for all $x \in X$. To prove μ satisfies (FI4), we consider the following four cases:

$$(x * y) * z^{n} \in A_{k} - A_{k-1}, y \in A_{k} - A_{k-1}, (x * y) * z^{n} \in A_{k} - A_{k-1}, y \notin A_{k} - A_{k-1}, (x * y) * z^{n} \notin A_{k} - A_{k-1}, y \in A_{k} - A_{k-1}, (x * y) * z^{n} \notin A_{k} - A_{k-1}, y \notin A_{k} - A_{k-1}.$$

The first case implies that $x * z^n \in A_k$, because A_k is an *n*-fold strong ideal. Hence we have

$$\mu(x * z^n) \ge t_k = \mu((x * y) * z^n) = \mu(y) = \min\{\mu((x * y) * z^n), \mu(y)\}.$$

In the second case, we know that either $y \in A_{k-1}$ or $y \in A_m - A_{m-1} \subset A_m - A_k \subset A_m$ for some m > k. Since $(x * y) * z^n \in A_k - A_{k-1} \subset A_k$, it follows that either $x * z^n \in A_k$ or $x * z^n \in A_m - A_k \subset A_m$. Therefore we have

$$\mu(x * z^n) \ge t_k = \mu((x * y) * z^n)$$
$$\ge \min\{\mu((x * y) * z^n), \mu(y)\}$$

for $y \in A_{k-1}, x * z^n \in A_k$. Similarly,

$$\mu(x * z^n) \ge t_m = \mu(y) = \min\{\mu((x * y) * z^n), \mu(y)\}$$

for $y \in A_m - A_{m-1}$ and $x * z^n \in A_m - A_k$. In the last two cases the process of verification is analogous.

Corollary 4.15. Let μ be a fuzzy set in X with $Im(\mu) = \{t_0, \dots, t_m\}$, where $t_0 > t_1 > \dots > t_m$ in [0, 1]. If $A_0 \subset A_1 \subset \dots \subset A_m = X$ is a chain of n-fold strong ideals of X such that $\mu(A_k) \ge t_k$ for $k = 0, 1, \dots, m$, then μ is a fuzzy n-fold strong ideal of X.

Proof. Straightforward.

Corollary 4.16. Let μ be a fuzzy *n*-fold strong ideal of X. If $Im(\mu) = \{t_0, \dots, t_m\}$, where $t_0 > t_1 > \dots > t_m$ in [0, 1], then $U(\mu; t_k), k = 0, 1, \dots, m$, are *n*-fold strong ideals of X such that

$$\mu(U(\mu; t_0)) = t_0 \text{ and } \mu(U(\mu; t_k) - U(\mu; t_{k-1})) = t_k \text{ for } k = 0, 1, \cdots, m.$$

Proof. By Theorem 4.9, $U(\mu; t_k)$ are strong ideals of X. Obviously, $\mu(U(\mu; t_0)) = t_0$. Since $\mu(U(\mu; t_1)) \ge t_1$, we have $\mu(x) = t_0$ for $x \in U(\mu; t_0)$, $\mu(x) \ge t_1$ for $x \in U(\mu; t_0) - U(\mu : t_1)$. Repeating this process, we conclude that $\mu(U(\mu; t_k) - U(\mu; t_{k-1})) = t_k$ for $k = 1, \dots, m$.

Lemma 4.17. Every fuzzy set μ in X is represented by $\mu(x) = \sup\{t \in [0, 1] | x \in U(\mu; t)\}$ for all $x \in X$.

Proof. Let $s := \sup\{t \in [0,1] | x \in U(\mu;t)\}$ and let $\epsilon > 0$ be given. Then there exists $t \in [0,1]$ such that $s < s + \epsilon$ and $x \in U(\mu;t)$, and hence $s < \mu(x) + \epsilon$. Since ϵ is arbitrary, it follows that $s \le \mu(x)$. Let $\mu(x) = w$. Then $x \in U(\mu;w)$, i.e., $w \in \{t \in [0,1] | \mu(x) \in U(\mu;t)\}$. Thus $w \le \sup\{t \in [0,1] | x \in U(\mu;t)\} = s$, and therefore $\mu(x) = s$, completing the proof. \Box

Let A be a subset of X. The least n-fold strong ideal of X containing A is called an n-fold strong ideal generated by A, written $\langle A \rangle$.

For any fuzzy set μ in X, the least fuzzy *n*-fold strong ideal of X containing μ is called a *fuzzy n-fold strong ideal of X induced by* μ , denoted by $\langle \mu \rangle$.

Theorem 4.18. Let μ be a fuzzy set in X. Then the fuzzy set μ^* in X defined by

$$\mu^* := \sup\{t \in [0,1] | x \in \langle U(\mu;t) \rangle\}$$

for all $x \in X$ is the fuzzy *n*-fold strong ideal $\langle \mu \rangle$ induced by μ .

Proof. For any $r \in Im(\mu^*)$, let $r_k = r - \frac{1}{k}$ for any $k \in \mathbb{N}$. If $x \in U(\mu^*; r)$, then $\mu^*(x) \ge r$ and so

$$\sup\{t\in[0,1]|x\in\langle U(\mu;t)\rangle\}\geq r>r-\frac{1}{k}=r_k$$

for any $k \in \mathbb{N}$. Hence there exists $s \in \{t \in [0,1] | x \in \langle U(\mu;t) \rangle\}$ such that $s > r_k$. Thus $U(\mu;s) \subseteq U(\mu;r_k)$ and so $x \in \langle U(\mu;s) \rangle \subseteq \langle U(\mu;r_k) \rangle$ for all $k \in \mathbb{N}$. Consequently, $x \in \cap_{k \in \mathbb{N}} \langle U(\mu;r_k) \rangle$.

On the other hand, if $x \in \bigcap_{k \in \mathbb{N}} \langle U(\mu; r_k) \rangle$, then $r_k \in \{t \in [0, 1] | x \in \langle U(\mu; t) \rangle \}$ for any $k \in \mathbb{N}$. Therefore

$$r - \frac{1}{k} = r_k \le \sup\{t \in [0, 1] | x \in \langle U(\mu; t) \rangle\} = \mu^*(x)$$

for all $k \in \mathbb{N}$. Since k is arbitrary, it follows that $r \leq \mu^*(x)$ so that $x \in U(\mu^*; r)$. Hence $U(\mu^*; r) = \bigcap_{k \in \mathbb{N}} \langle U(\mu; r_k) \rangle$, which is an n-fold strong ideal of X. Using Theorem 4.9, we know that μ^* is a fuzzy n-fold strong ideal of X.

Now we prove that μ^* contains μ . For any $x \in X$, let $s \in \{t \in [0,1] | x \in U(\mu;t)\}$. Then $x \in U(\mu;s)$ and so $x \in \langle U(\mu;s) \rangle$. Thus $s \in \{t \in [0,1] | x \in \langle U(\mu;t) \rangle\}$, which implies that

$$\{t \in [0,1] | x \in U(\mu;t)\} \subseteq \{t \in [0,1] | x \in \langle U(\mu;t) \rangle\}.$$

Using Lemma 4.17, we have

$$\mu(x) = \sup\{t \in [0,1] | x \in U(\mu;t)\}$$

$$\leq \sup\{t \in [0,1] | x \in \langle U(\mu;t) \rangle\}$$

$$= \mu^*(x).$$

Hence $\mu \subseteq \mu^*$.

Finally, let ν be a fuzzy *n*-fold strong ideal of X containing μ . Let $x \in X$. If $\mu^*(x) = 0$, then obviously $\mu^*(x) \leq \nu(x)$. Assume that $\mu^*(x) = r \neq 0$. Then $x \in U(\mu^*; r) = \bigcap_{k \in \mathbb{N}} \langle U(\mu; r_k) \rangle$, i.e., $x \in U(\mu; r_k)$ for all $k \in \mathbb{N}$. It follows that $\nu(x) \geq \mu(x) \geq r_k - \frac{1}{k}$ for all $k \in \mathbb{N}$ so that $\nu(x) \geq r = \mu^*(x)$ since k is arbitrary. This shows that $\mu^* \subseteq \nu$, completing the proof. \Box

Theorem 4.19. Let $\{A_k | k \in \mathbb{N}\}$ be a family of *n*-fold strong ideals of a *BH*-algebra X which is nested, i.e., $A_0 \supset A_1 \supset A_2 \supset \cdots$. Let μ be a family set in X defined by

$$\mu(x) = \begin{cases} \frac{k}{k+1} & \text{if } x \in A_k - A_{k+1}, \ k = 0, 1, 2, \cdots \\ 1 & \text{if } x \in \bigcap_{k=0}^{\infty} A_K \end{cases}$$

for all $x \in X$, where A_0 stands for X. Then μ is a fuzzy n-fold strong ideal of X.

Proof. Clearly $\mu(0) \geq \mu(x)$ for all $x \in X$. Let $x, y, z \in X$. Suppose that $(x * y) * z^n \in A_k - A_{k+1}, y \in A_r - A_{r+1}$ for $k = 0, 1, 2, \dots, r = 0, 1, 2, \dots$. Without loss of generality, we may assume that $k \leq r$. Then obviously $y \in A_k$. Since A_k is an *n*-fold strong ideal, it follows that $x * z^n \in A_k$ so that

$$\mu(x * z^n) \ge \frac{k}{k+1} = \min\{\mu((x * y) * z^n), \mu(y)\}.$$

If $(x * y) * z^n \in \bigcap_{k=0}^{\infty} A_k$ and $y \in \bigcap_{k=0}^{\infty} A_k$, then there exists $i \in \mathbb{N}$ such that $(x * y) * z^n \in A_i - A_{i+1}$. It follows that $x * z^n \in A_i$, so that

$$\mu(x * z^n) \ge \frac{i}{i+1} = \min\{\mu((x * y) * z^n), \mu(y)\}.$$

Finally, assume that $(x * y) * z^n \in \bigcap_{k=0}^{\infty} A_k$ and $y \notin \bigcap_{k=0}^{\infty} A_k$. Then $y \in A_j - A_{j+1}$ for some $j \in \mathbb{N}$. Hence $x * z^n \in A_j$, and thus

$$\mu(x * z^n) \ge \frac{j}{j+1} = \min\{\mu((x * y) * z^n), \mu(y)\}.$$

Consequently, μ is a fuzzy *n*-fold strong ideal of X.

References

- S. S. Ahn and Eun Mi Kim, On n-fold strong ideals of BH-algebras, Honam Math.33(2011), 271-277.
- S. S. Ahn and Jin Hwa Lee, Rough Strong Ideals in BH-algebras, Honam Math. J. 32(2010), 203-215.
- 3. K. Iséki, On BCI-algebras, Mathematics Seminar Notes, 8(1980), 125-130.
- K. Iséki and S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japonica, 23(1978), 1-26.
- 5. Y. B. Jun, E. H. Roh and H. S. Kim, On BH-algebras, Scientae Math. 1(1998), 347-354.
- Y. B. Jun, E. H. Roh and Q. Zhang, On fuzzy translation BH-ideals in BH-algebras, J. Fuzzy Math. 8(2008), 361-370.
- D. Mundici, MV-algebras are categorically equivalent to bounded commutative BCKalgebras, Math. Japon., 31(1986), 889-894.

Eun Mi Kim and Sun Shin Ahn

- J. Meng, Implicative commutative semigroups are equivalent to a class of BCK-algebras, Semigroup Forum, 50(1995), 89-96.
- 9. J. Meng and Y. B. Jun, BCK-algebras, Kyung Moon Sa, Seoul, 1994.
- E. H. Roh and S. Y. Kim, On BH*-subalgebras of transitive BH*-algebras, Far East J. Math. Sci., 1(1999), 255-263.

Eun Mi Kim is working as a teacher in Sanggye High School and is interested in BH/BCK-algebras and Fuzzy Algebras.

Department of Mathematics Education, Dongguk University, Seoul 100-715, Korea. e-mail: duchil@hanmail.net

Sun Shin Ahn is working as a professor at Dongguk University and is interested in BH/BCK-algebras.

Department of Mathematics Education, Dongguk University, Seoul 100-715, Korea. e-mail: sunshine@dongguk.edu