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SOME LIMIT PROPERTIES OF RANDOM TRANSITION

PROBABILITY FOR SECOND-ORDER NONHOMOGENEOUS

MARKOV CHAINS ON GENERALIZED GAMBLING SYSTEM

INDEXED BY A DOUBLE ROOTED TREE†

KANGKANG WANG∗ AND DECAI ZONG

Abstract. In this paper, we study some limit properties of the harmonic
mean of random transition probability for a second-order nonhomogeneous
Markov chain on the generalized gambling system indexed by a tree by

constructing a nonnegative martingale. As corollary, we obtain the prop-
erty of the harmonic mean and the arithmetic mean of random transition
probability for a second-order nonhomogeneous Markov chain indexed by

a double root tree.
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1. Introduction

A tree is a graph S = {T,E} which is connected and contains no circuits.
Given any two vertices σ, t( σ ̸= t ∈ T ), let σt be the unique path connecting σ
and t. Define the graph distance d(σ, t) to be the number of edges contained in
the path σt.

Let To be an arbitrary infinite tree that is partially finite (i.e. it has infinite
vertices, and each vertex connects with finite vertices) and has a root o. Mean-
while, we consider another kind of double root tree T , that is, it is formed with
the root o of To connecting with an arbitrary point denoted by the root −1.
For a better explanation of the double root tree T , we take Cayley tree TC,N

for example. It’s a special case of the tree To, the root o of Cayley tree has N
neighbors and all the other vertices of it have N +1 neighbors each. The double
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root tree T
′

C,N (see Fig.1) is formed with root o of tree TC,N connecting with
another root −1.

Let σ, t be vertices of the double root tree T . Write t ≤ σ (σ, t ̸= −1) if t is
on the unique path connecting o to σ, and |σ| for the number of edges on this
path. For any two vertices σ, t (σ, t ̸= −1) of the tree T , denote by σ ∧ t the
vertex farthest from o satisfying σ ∧ t ≤ σ and σ ∧ t ≤ t.

The set of all vertices with distance n from root o is called the n-th generation
of T , which is denoted by Ln. We say that Ln is the set of all vertices on level
n and especially root−1 is on the −1st level on tree T . We denote by T (n) the
subtree of the tree T containing the vertices from level −1 (the root −1) to level

n and denote by T
(n)
o the subtree of the tree To containing the vertices from level

0 (the root o) to level n. Let t(̸= o,−1)be a vertex of the tree T . We denote the
first predecessor of t by 1t, the second predecessor of t by 2t, and denote by nt

the n-th predecessor of t. Let XA = {Xt, t ∈ A}, and let xA be a realization of
XA and denote by |A| the number of vertices of A .
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Fig.1 Double root tree T
′
C,2

Definition 1. Let S = {s1, s2, · · · , sN} and P (z|y, x) be a nonnegative function
on S3. Let

P = ((P (z|y, x)), P (z|y, x) ≥ 0, x, y, z ∈ S.

If ∑
z∈S

P (z|y, x) = 1,

then P is called a second-order transition matrix.

Definition 2. Let T be a double root tree and S = {s1, s2, · · · , sN} be a finite
state space, and {Xt, t ∈ T} be a collection of S-valued random variables defined
on the probability space (Ω, F, P ). Let

P = (p(x, y)), x, y ∈ S (1)
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be a distribution on S2, and

Pt = (Pt(z|y, x)), x, y, z ∈ S, t ∈ T\{o}{−1} (2)

be a collection of second-order transition matrices. For any vertex t (t ̸= o,−1),
if

P (Xt = z|X1t = y,X2t = x, and Xσ for σ ∧ t ≤ 1t)

= P (Xt = z|X1t = y,X2t = x) = Pt(z|y, x) ∀x, y, z ∈ S (3)

and

P (X−1 = x,Xo = y) = p(x, y), x, y ∈ S, (4)

then {Xt, t ∈ T} is called a S-valued second-order nonhomogeneous Markov
chain indexed by a tree T with the initial distribution (1) and second-order
transition matrices (2), or called a T -indexed second-order nonhomogeneous
Markov chain.

Remark 1. Benjamini and Peres [1] have given the definition of the tree-indexed
homogeneous Markov chains. Here we improve their definition and give the
definition of the tree-indexed second-order nonhomogeneous Markov chains in a
similar way.

There have been some works on limit theorems for tree-indexed stochastic
processes. Benjamini and Peres [1] have given the notion of the tree-indexed
Markov chains and studied the recurrence and ray-recurrence for them. Berger
and Ye [2] have studied the existence of entropy rate for some stationary random
fields on a homogeneous tree. Ye and Berger (see [13],[14] ), by using Pemantle’s
result [8] and a combinatorial approach, have studied the Shannon-McMillan
theorem with convergence in probability for a PPS-invariant and ergodic random
field on a homogeneous tree. Yang and Liu [11] have studied a strong law of
large numbers for the frequency of occurrence of states for Markov chains field
on a homogeneous tree (a particular case of tree-indexed Markov chains field and
PPS-invariant random fields). Yang (see [10]) has studied the strong law of large
numbers for frequency of occurrence of state and Shannon-McMillan theorem for
homogeneous Markov chains indexed by a homogeneous tree. Recently, Yang
(see [12]) has studied the strong law of large numbers and Shannon-McMillan
theorem for nonhomogeneous Markov chains indexed by a homogeneous tree.
Huang and Yang (see [3]) have also studied the strong law of large numbers for
Markov chains indexed by an infinite tree with uniformly bounded degree. Shi
and Yang (see [9]) have discussed the limit properties for the harmonic mean of
second-order nonhomogeneous Markov chain indexed by a tree. Liu (see[5],[6])
have studied some limit properties for the transition probabilities of second-order
nonhomogeneous Markov chains.

Definition 3. Let {fn(x1, · · · , xn), n ≥ 1} be a sequence of real-valued func-
tions defined on Sn(n = 1, 2, · · · ), which will be called the generalized selection
functions if {fn, n ≥ 1} take values in a set A of positive real numbers. We let

Y0 = y (y is an arbitrary real number),
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Yt = f|t|(X1t , X2t , · · · , X0), |t| ≥ 1, (5)

where |t| stands for the number of the edges on the path from the root o to t.
Then {Yt, t ∈ T (n)} is called the generalized gambling system or the generalized
random selection system indexed by an infinite tree with uniformly bounded
degree. The traditional random selection system {Yn, n ≥ 0}[4] takes values in
the set of {0, 1}.

We first explain the conception of the traditional random selection, which is
the crucial part of the gambling system. We give a set of real-valued functions
fn(x1, · · · , xn) defined on Sn(n = 1, 2, · · · ), which will be called the random
selection function if they take values in a two-valued set {0, 1}. Then let

Y1 = y(y is an arbitrary real number),

Yn+1 = fn(X1, · · · , Xn), n ≥ 1. (6)

where {Yn, n ≥ 1} be called the gambling system (the random selection system).
In order to explain the real meaning of the notion of the random selection,

we consider the traditional gambling model. Let {Xn, n ≥ 0} be a second-order
nonhomogeneous Markov chain, and {gn(x, y, z), n ≥ 2} be a real-valued func-
tion sequence defined on S3. Interpret Xn as the result of the nth trial, the
type of which may change at each step. Let µn = Yngn(Xn−2, Xn−1, Xn) de-
note the gain of the bettor at the nth trial, where Yn represents the bet size,
gn(Xn−2, Xn−1, Xn) is determined by the gambling rules, and {Yn, n ≥ 0} is
called a gambling system or a random selection system. The bettor’s strategy is
to determine {Yn, n ≥ 1} by the results of the last two trials. Let the entrance fee
that the bettor pays at the nth trial be bn. Also suppose that bn depends onXn−1

and Xn−2 as n ≥ 2, and b2 is a constant. Thus
∑n

k=2 Ykgk(Xk−2, Xk−1, Xk) rep-

resents the total gain in the first n trials,
∑n

k=2 bk the accumulated entrance fees,
and

∑n
k=2 [Ykgk(Xk−2, Xk−1, Xk)− bk] the accumulated net gain. Motivated by

the classical definition of ”fairness” of game of chance (see Kolmogorov[4]), we
introduce the following definition:

Definition 4. The game is said to be fair, if for almost all ω ∈ {ω :
∑∞

k=2 Yk =
∞}, the accumulated net gain in the first n trial is to be of smaller order of
magnitude than the accumulated stake

∑n
k=2 Yk as n tends to infinity, that is

lim
n→∞

1∑n
k=2 Yk

n∑
k=2

[Ykgk(Xk−2, Xk−1, Xk)− bk] = 0 a.s. on {ω :
∑∞

k=2
Yk = ∞}.

Let Pt(xt | x1t , x2t) = Pt(Xt = xt | X1t = x1t , X2t = x2t). Then Pt(Xt |
X1t , X2t) is called the random transition probability of a T -indexed second-order
nonhomogeneous Markov chain. Liu [5] has studied a strong limit theorem for
the harmonic mean of the random transition probability of finite nonhomoge-
neous Markov chains. In this paper, we study some limit properties of the
harmonic mean of random transition probability for a second-order nonhomo-
geneous Markov chain in the generalized gambling system indexed by a tree
by constructing a nonnegative martingale. As corollaries, we obtain some limit
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properties for a second-order nonhomogeneous Markov chain indexed by a tree
and general second-order nonhomogeneous Markov chain. The results of [5] and
[6] have been generalized.

2. Main results

In this section, we generalize the traditional gambling system to the case
of the second-order nonhomogeneous Markov chain indexed by the a tree and
investigate some limit properties of the harmonic mean of random transition
probability for a second-order nonhomogeneous Markov chain on the generalized
gambling system indexed by a tree. Let us give the following conclusion:

Theorem 1. Let {Xt, t ∈ T} be a T -indexed second-order nonhomogeneous
Markov chain with state space S defined as in Definition 2, and its initial dis-
tribution and probability transition collection satisfying

P (X−1 = x−1, Xo = xo) = P (x, y) > 0, ∀x, y ∈ S, (7)

and

Pt(z | y, x) > 0, ∀x, y, z ∈ S, t ∈ T\{o}{−1}, (8)

respectively. {Yt, t ∈ T} is defined as in Definition 3. Denote

αt = min{Pt(z | y, x), x, y, z ∈ S}, t ∈ T \ {o}{−1}. (9)

Take an s0 > 1, denote

D(ω) = {ω : lim
n

an(ω) = ∞, lim sup
n→∞

1

an(ω)

∑
t∈T (n)\{o}{−1}

Yts
Yt/αt

0 = M < ∞}.

(10)
Then the following holds

lim
n→∞

1

an(ω)

∑
t∈T (n)\{o}{−1}

Yt[Pt(Xt|X1t , X2t)
−1 −N ] = 0. a.s. ω ∈ D(ω). (11)

Remark 2. In Theorem 1, there is no direct relations between the sum equation∑
t∈T (n)\{o}{−1}

Yt[Pt(Xt|X1t , X2t)
−1 −N ] and an(ω). The aim of the theorem is

to show that
∑

t∈T (n)\{o}{−1}
Yt[Pt(Xt|X1t , X2t)

−1 −N ] is to be of smaller order

of magnitude than an(ω) as n tends to infinity.

Proof. Obviously, when n ≥ 1, we have

P (xT (n)

) = P (XT (n)

= xT (n)

) = P (X−1 = x−1, Xo = xo)
∏

t∈T (n)\{o}{−1}

Pt(xt|x1t , x2t).

(12)

Hence

P (XLn = xLn |XT (n−1)

= xT (n−1)

) =
P (xT (n)

)

P (xT (n−1))
=
∏
t∈Ln

Pt(xt|x1t , x2t). (13)



546 Kangkang Wang

Let us denote

Mt(s;x1t , x2t) = E[sYtPt(Xt|X1t ,X2t )
−1

|X1t = x1t , X2t = x2t ]

=
∑
xt∈S

sYtPt(xt|x1t ,x2t )
−1

Pt(xt|x1t , x2t), t ∈ T\{o}{−1}. (14)

Mt(s;X1t , X2t) is called the conditional generating function of YtPt(Xt|X1t , X2t)
−1

given X1t = x1t , X2t = x2t . Denote s ∈ ( 1
s0
, s0),

Un(s, ω) =
s

∑
t∈T (n)\{o}{−1}

YtPt(Xt|X1t ,X2t )
−1

∏
t∈T (n)\{o}{−1}

Mt(s;X1t , X2t)
. (15)

In view of the (13), (14), (15) and Markov’s property, Fn = σ(XT (n)

), we can
conclude that

E[Un(s, ω)|Fn−1]

= E

 ∏
t∈T (n)\{o}{−1}

sYtPt(Xt|X1t ,X2t )
−1

Mt(s;X1t , X2t)
|Fn−1


= Un−1(s, ω)E

[ ∏
t∈Ln

sYtPt(Xt|X1t ,X2t )
−1

Mt(s;X1t , X2t)
|Fn−1

]

= Un−1(s, ω)
∑

xLn∈SLn

∏
t∈Ln

sYtPt(xt|X1t ,X2t )
−1

Mt(s;X1t , X2t)
· P (XLn = xLn |XT (n−1)

)

= Un−1(s, ω)
∑

xLn∈SLn

∏
t∈Ln

sYtPt(xt|X1t ,X2t )
−1

Mt(s;X1t , X2t)
Pt(xt|X1t , X2t)

= Un−1(s, ω)
∏
t∈Ln

∑
xt∈S

sYtPt(xt|X1t ,X2t )
−1

Mt(s;X1t , X2t)
Pt(xt|X1t , X2t)

= Un−1(s, ω)
∏
t∈Ln

Mt(s;X1t , X2t)

Mt(s;X1t , X2t)
= Un−1(s, ω). (16)

In equation (16), since S = {s1, s2, · · · , sN} is a finite alphabet-set,
∑

and
∏

can be changed in the derivation of eq(16).
Then {Un(s, ω), Fn, n ≥ 1} is a nonnegative martingale. According to Doob

martingale convergence theorem, we have

lim
n→∞

Un(s, ω) = U(s, ω) < ∞ a.s. . (17)

Thus, by (10) and (17), we get

lim sup
n→∞

1

an
lnUn(s, ω) ≤ 0 a.s. ω ∈ D(ω). (18)

It follows from (15) and (18) that
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lim sup
n→∞

1

an

∑
t∈T (n)\{o}{−1}

[YtPt(Xt|X1t , X2t)
−1 ln s− lnMk(s;X1t , X2t)] ≤ 0.

(19)

a.s. ω ∈ D(ω).

On the other hand, by (9), (19) and the inequalities lnx ≤ x − 1(x > 0), and
0 ≤ sx − 1− x ln s ≤ 1

2 (x ln s)
2e|x ln s|, we have

lim sup
n→∞

1

an

∑
t∈T (n)\{o}{−1}

Yt ln s[Pt(Xt|X1t , X2t)
−1 −N ]

≤ lim sup
n→∞

1

an

∑
t∈T (n)\{o}{−1}

[lnMt(s;X1t ,X2t)− YtN ln s]

≤ lim sup
n→∞

1

an

∑
t∈T (n)\{o}{−1}

[Mt(s;X1t , X2t)− 1− YtN ln s]

= lim sup
n→∞

1

an

∑
t∈T (n)\{o}{−1}

∑
xt∈S

Pt(xt|X1t , X2t)

·[sYtPt(xt|X1t
,X2t

)−1

− 1− YtPt(xt|X1t , X2t)
−1 ln s]

≤ (ln s)2

2
lim sup
n→∞

1

an

∑
t∈T (n)\{o}{−1}

∑
xt∈S

Pt(xt|X1t , X2t)
−1Y 2

t e
|YtPt(xt|X1t

,X2t
)−1 ln s|

≤ (ln s)2

2
lim sup
n→∞

1

an

∑
t∈T (n)\{o}{−1}

∑
xt∈S

α−1
t Y 2

t e
|Ytα

−1
t ln s|

≤ N(ln s)2

2
lim sup
n→∞

1

an

∑
t∈T (n)\{o}{−1}

1

αt
Y 2
t exp{Ytα

−1
t | ln s|}.

a.s. ω ∈ D(ω). (20)

It is easy to see that

max
0<λ<1

{xλx, x > 0} = − e−1

lnλ
. (21)

Let 1 < s < s0, by (9), (10), (20) and (21), we have

lim sup
n→∞

1

an

∑
t∈T (n)\{o}{−1}

Yt[Pt(Xt|X1t , X2t)
−1 −N ]

≤ N ln s

2
lim sup
n→∞

1

an

∑
t∈T (n)\{o}{−1}

Y 2
t

αt
exp{Ytα

−1
t ln s}

=
N ln s

2
lim sup
n→∞

1

an

∑
t∈T (n)\{o}{−1}

Y 2
t

αt
sYt/αt
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=
N ln s

2
lim sup
n→∞

1

an

∑
t∈T (n)\{o}{−1}

Yt

αt

(
s

s0

)Yt/αt

Yts
Yt/αt

0

≤ N ln s

2
lim sup
n→∞

−1

an

∑
t∈T (n)\{o}{−1}

e−1

(
ln

s

s0

)−1

Yts
Yt/αt

0

=
Ne−1 ln s−1

2

(
ln

s

s0

)−1

lim sup
n→∞

1

an

∑
t∈T (n)\{o}{−1}

Yts
Yt/αt

0

≤ NMe−1 ln s−1

2

(
ln

s

s0

)−1

. a.s. ω ∈ D(ω). (22)

Letting s → 1+, by (22), we have

lim sup
n→∞

1

an

∑
t∈T (n)\{o}{−1}

Yt[Pt(Xt|X1t , X2t)
−1 −N ] ≤ 0. a.s. ω ∈ D(ω). (23)

Let 1/s0 < s < 1, by (10), (20) and (21) we obtain

lim inf
n→∞

1

an

∑
t∈T (n)\{o}{−1}

Yt[Pt(Xt|X1t , X2t)
−1 −N ]

≥ N ln s

2
lim sup
n→∞

1

an

∑
t∈T (n)\{o}{−1}

Y 2
t

αt
exp{−Ytα

−1
t ln s}

=
N ln s

2
lim sup
n→∞

1

an

∑
t∈T (n)\{o}{−1}

Y 2
t

αt
s−Yt/αt

=
N ln s

2
lim sup
n→∞

1

an

∑
t∈T (n)\{o}{−1}

Yt

αt

(
1

s0s

)Yt/αt

Yts
Yt/αt

0

≥ N ln s

2
lim sup
n→∞

−1

an

∑
t∈T (n)\{o}{−1}

e−1

(
ln

1

s0s

)−1

Yts
Yt/αt

0

≥ NMe−1 ln s−1

2

(
ln

1

s0s

)−1

. a.s. ω ∈ D(ω). (24)

Letting s → 1−, by (24), we get

lim inf
n→∞

1

an

∑
t∈T (n)\{o}{−1}

Yt[Pt(Xt|X1t , X2t)
−1 −N ] ≥ 0. a.s. ω ∈ D(ω). (25)

Combining (23) and (25), we obtain (11) directly. �
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3. Some Corollaries

Corollary 1. Let {Xt, t ∈ T} be a T -indexed second-order nonhomogeneous
Markov chain with state space S defined as in Theorem 1, denote

αt = min{Pt(z | y, x), x, y, z ∈ S}, t ∈ T \ {o}{−1}. (26)

Take an s0 > 1, denote

D0(ω) = {ω : lim
n

∑
t∈T (n)\{o}{−1}

Yt = ∞,

lim sup
n→∞

1∑
t∈T (n)\{o}{−1}

Yt

∑
t∈T (n)\{o}{−1}

Yts
Yt/αt

0 = M < ∞}. (27)

Then the harmonic mean of the random conditional probability {Pt(Xt | X1t , X2t),
t ∈ T (n) \{o}{−1}} in the generalized gambling system converges to 1

N a.s., that
is

lim
n

∑
t∈T (n)\{o}{−1}

Yt∑
t∈T (n)\{o}{−1}

YtPt(Xt|X1t , X2t)
−1

=
1

N
. a.s. ω ∈ D0(ω). (28)

Proof. Let an(ω) =
∑

t∈T (n)\{o}{−1}
Yt, by (10) we obtain D(ω) = D0(ω) and

lim
n→∞

1

an

∑
t∈T (n)\{o}{−1}

Yt[Pt(Xt|X1t , X2t)
−1 −N ]

= lim
n→∞

1∑
t∈T (n)\{o}{−1}

Yt

∑
t∈T (n)\{o}{−1}

Yt[Pt(Xt|X1t , X2t)
−1 −N ]

= lim
n→∞

1∑
t∈T (n)\{o}{−1}

Yt

∑
t∈T (n)\{o}{−1}

YtPt(Xt|X1t , X2t)
−1 −N = 0. (29)

Therefore, (28) follows from (29) immediately. �

Corollary 2. Let {Xt, t ∈ T} be a T -indexed second-order nonhomogeneous
Markov chain with state space S defined as in Theorem 1, denote

αt = min{Pt(z | y, x), x, y, z ∈ S}, t ∈ T \ {o}{−1}. (30)

If there exists a(> 0) such that

lim sup
n→∞

1

|T (n)|
∑

t∈T (n)\{o}{−1}

ea/αt = M < ∞. (31)

Then

lim
n→∞

|T (n)|∑
t∈T (n)\{o}{−1} Pt(Xt | X1t , X2t)

−1
=

1

N
, a.s. (32)
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where |T (n)| represents the number of all the vertices from Level −1 to Level n.

Proof. Let Yt ≡ 1, t ∈ T (n), s0 = ea, by (27) we obtain

lim
n

∑
t∈T (n)\{o}{−1}

Yt = lim
n
(|T (n)| − 2) = ∞,

and

lim sup
n→∞

1∑
t∈T (n)\{o}{−1}

Yt

∑
t∈T (n)\{o}{−1}

Yts
Yt/αt

0

= lim sup
n→∞

1

|T (n)| − 2

∑
t∈T (n)\{o}{−1}

s
1/αt

0

= lim sup
n→∞

1

|T (n)|
∑

t∈T (n)\{o}{−1}

ea/αt = M < ∞. (33)

Therefore, it is easy yo see that D0(ω) = Ω and (32) follows from (28) directly.
�

If the successor of each vertex of the tree To has only one vertex, the second-
order nonhomogeneous Markov chains on the double-rooted tree T degenerate
into the general second-order nonhomogeneous Markov chains. Thus we obtain
the following results:

Corollary 3 (see [5],[6]). Let {Xn, n ≥ 0} be a second-order nonhomogeneous
Markov chain with state space S, and its initial distribution and probability tran-
sition sequence satisfying

p(i, j) > 0, i, j ∈ S , (34)

and

Pk(h|i, j) > 0, i, j, h ∈ S, k = 1, 2, · · · . (35)

respectively. Denote

ak = min{Pk(h|i, j), i, j, h ∈ S}, k = 1, 2, · · · , (36)

If there exists s0(> 1) such that

lim sup
n→∞

1

n

n∑
k=1

s
1
ak
0 = M < ∞ , (37)

then

lim
n→∞

n∑n
k=1 Pk(Xk | Xk−1, Xk−2)−1

=
1

N
a.s. . (38)
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Proof. When the successor of each vertex of the tree T has only one vertex,
the nonhomogeneous Markov chains on the tree T degenerate into the general
nonhomogeneous Markov chains, |T (n)| = n + 2, the corollary follows directly
from Corollary 2. �

4. Limit Property for Arithmetic Mean of Transition Probability of
Second-Order Nonhomogeneous Markov Chain Indexed by a Tree

Taking into account the theoretical and practical importance of transition
probability of second-order nonhomogeneous Markov chain, in this section we
will make an estimation for the arithmetic mean of Pt(Xt | X1t , X2t). For this
purpose, we introduce the following theorem.

Theorem 2. Let {Xt, t ∈ T} be a T -indexed second-order nonhomogeneous
Markov chain with state space S defined as in Theorem 1, if αt ≥ α > 0,
t ∈ T (n)\{o}{−1}, then

1

N
≤ lim sup

n

1

|T (n)|
∑

t∈T (n)\{o}{−1}

Pt(Xt|X1t , X2t) ≤
[1− (N − 2)α]2

4α[1− (N − 1)α]N
. a.s. (39)

Proof. In view of αt ≥ α > 0, t ∈ T (n)\{o}{−1} and (31), we have

lim sup
n→∞

1

|T (n)|
∑

t∈T (n)\{o}{−1}

ea/αt

≤ lim sup
n→∞

1

|T (n)|
∑

t∈T (n)\{o}{−1}

ea/α = lim sup
n→∞

|T (n)| − 2

|T (n)|
ea/α = ea/α < ∞ (40)

Hence (31) holds naturally. Let us denote βt = max{pt(z|x, y), x, y, z ∈ S}, it
is easy to show

αt ≤ 1/N ≤ βt ≤ 1− (N − 1)αt. (41)

By αt ≥ α > 0, t ∈ T (n)\{o}{−1} and (41), we get

α ≤ Pt(Xt|X1t , X2t) ≤ 1− (N − 1)α. (42)

According to Schweitzer inequality, we obtain

1 =
1

n2

(
n∑

m=1

√
dm · 1

dm

)2

≤ (
1

n

n∑
m=1

dm)(
1

n

n∑
m=1

1

dm
) ≤ (A+B)2

4AB
, (43)

where 0 < A ≤ dm ≤ B, m = 1, 2, · · · . Therefore, we can calculate(
|T (n)| − 2

|T (n)|

)2

=
1

|T (n)|2

 ∑
t∈T (n)\{o}{−1}

√
Pt(Xt|X1t , X2t)Pt(Xt|X1t , X2t)

−1

2
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≤

 1

|T (n)|
∑

t∈T (n)\{o}{−1}

Pt(Xt|X1t , X2t)


·

 1

|T (n)|
∑

t∈T (n)\{o}{−1}

Pt(Xt|X1t , X2t)
−1


≤ [1− (N − 2)α]2

4α[1− (N − 1)α]
(44)

By the superior limit property and (32), we can write

1 = lim sup
n→∞

(
|T (n)| − 2

|T (n)|

)2

≤ lim sup
n→∞

N

|T (n)|
∑

t∈T (n)\{o}{−1}

Pt(Xt|X1t , X2t) ≤
[1− (N − 2)α]2

4α[1− (N − 1)α]
. (45)

(39) follows from (45) immediately. �
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