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Abstract. In this paper, we investigate h−stability of the nonlinear per-
turbed differential systems using the the notion of t∞-similarity.
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1. Introduction

As is traditional in a pertubation theory of nonlinear differential equations,
the behavior of solutions of a perturbed equation is determined in terms of
the behavior of solutions of an unperturbed equation. Using the variation of
constants formula and the integral inequalities, we study the qualitative behavior
of the solutions of perturbed nonlinear system of differential equations:

Pinto [13] introduced h-stability(hS) which is an important extention of the
notions of exponential asymptotic stability and uniform Lipschitz stability. Also,
he obtained some properties about asymptotic behavior of solutions of perturbed
h-systems, some general results about asymptotic integration and gave some
important examples in [14].

Choi and Ryu [3] obtained hS of the solutions of the various differential sys-
tems and Volterra integro-differential systems. Recently, Choi et al. [4] and
Goo and Ry [7,8] dealt with results for hS of nonlinear differential systems via
-similarity. Goo et al. [9,10] investigated hS for the nonlinear Volterra integro-
differential system.

In this paper, we investigate h−stability of the nonlinear perturbed differential
systems using the the notion of t∞-similarity.

Received August 4, 2011. Revised December 6, 2011. Accepted December 21, 2011.

c⃝ 2012 Korean SIGCAM and KSCAM.

511



512 Yoon Hoe Goo

2. Preliminaries

We consider the nonlinear differential system

x′(t) = f(t, x(t)), x(t0) = x0, (1)

where f ∈ C[R+ × Rn,Rn], R+ = [0,∞) and Rn is the Euclidean n-space.
We assume that the Jacobian matrix fx = ∂f/∂x exists and is continuous on
R+ × Rn and f(t, 0) = 0.

Let x(t) = x(t, t0, x0) denote the unique solution of (1) through (t0, x0) in
R+×Rn such that x(t0, t0, x0) = x0. Also, we consider the associated variational
systems around the zero solution of (1) and around x(t), respectively,

v′(t) = fx(t, 0)v(t), v(t0) = v0 (2)

and

z′(t) = fx(t, x(t, t0, x0))z(t), z(t0) = z0. (3)

The fundamental matrix solution Φ(t, t0, x0) of (3) is given by

Φ(t, t0, x0) =
∂

∂x0
x(t, t0, x0),

and Φ(t, t0, 0) is the fundamental matrix solution of (2). The symbol |.| denotes
arbitrary vector norm in Rn.

We recall some notions of h-stability [13] and the notion of t∞-similarity [5].

Definition 2.1. The system (1) (the zero solution x = 0 of (1)) is called an
h-system if there exist a constant c ≥ 1, and a positive continuous function h on
R+ such that

|x(t)| ≤ c |x0|h(t)h(t0)−1

for t ≥ t0 ≥ 0 and |x0| small enough.

Definition 2.2. The system (1) (the zero solution x = 0 of (1)) is called h-
stable (hS) if there exist δ > 0 such that (1) is an h-system for |x0| ≤ δ and h is
bounded.

Let M denote the set of all n × n continuous matrices A(t) defined on R+

and N be the subset of M consisting of those nonsingular matrices S(t) that
are of class C1 with the property that S(t) and S−1(t) are bounded. The notion
of t∞-similarity in M was introduced by Conti [5].

Definition 2.3. A matrix A(t) ∈ M is t∞-similar to a matrix B(t) ∈ M if
there exists an n× n matrix F (t) absolutely integrable over R+, i.e.,∫ ∞

0

|F (t)|dt < ∞



h−stability of perturbed differential systems via t∞-similarity 513

such that

Ṡ(t) + S(t)B(t)−A(t)S(t) = F (t) (4)

for some S(t) ∈ N .

The notion of t∞-similarity is an equivalence relation in the set of all n × n
continuous matrices on R+, and it preserves some stability concepts [4,11]. We
give some related properties that we need in the sequal.

Lemma 2.1 ([15]). The linear system

x′ = A(t)x, x(t0) = x0, (5)

where A(t) is an n×n continuous matrix, is an h-system (respectively h-stable) if
and only if there exist c ≥ 1 and a positive and continuous (respectively bounded)
function h defined on R+ such that

|ϕ(t, t0)| ≤ c h(t)h(t0)
−1 (6)

for t ≥ t0 ≥ 0, where ϕ(t, t0) is a fundamental matrix of (5).

We need Alekseev formula to compare between the solutions of (1) and the
solutions of perturbed nonlinear system

y′ = f(t, y) + g(t, y), y(t0) = y0, (7)

where g ∈ C[R+ × Rn,Rn]. Let y(t) = y(t, t0, y0) denote the solution of (7)
passing through the point (t0, y0) in R+ × Rn.

The following is a generalization to nonlinear system of the variation of con-
stants formula due to Alekseev [1].

Lemma 2.2. If y0 ∈ Rn, for all t such that x(t, t0, y0) ∈ Rn,

y(t, t0, y0) = x(t, t0, y0) +

∫ t

t0

Φ(t, s, y(s)) g(s, y(s)) ds.

Theorem 2.3 ([3]). If the zero solution of (1) is hS, then the zero solution of
(2) is hS.

Theorem 2.4 ([4]). Suppose that fx(t, 0) is t∞-similar to fx(t, x(t, t0, x0)) for
t ≥ t0 ≥ 0 and |x0| ≤ δ for some constant δ > 0. Then the solution v = 0 of (2)
is hS if and only if the solution z = 0 of (3) is hS.

3. Main results

In this section, we investigate hS for the nonlinear perturbed differential sys-
tems. Now, we examine the properties of hS for the perturbed system of (1)

y′ = f(t, y) +

∫ t

t0

g(s, y(s))ds, y(t0) = y0, (8)

where g ∈ C[R+ × Rn,Rn] and g(t, 0) = 0
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Theorem 3.1. Suppose that fx(t, 0) is t∞-similar to fx(t, x(t, t0, x0)) for t ≥
t0 ≥ 0 and |x0| ≤ δ for some constant δ > 0, the solution x = 0 of (1) is hS with
the increasing function h, and g in (8) satisfies∣∣∣∣ ∫ s

t0

g(τ, y(τ))dτ

∣∣∣∣ ≤ a(s)|y(s)|+ b(s)

∫ s

t0

c(τ)|y(τ)|dτ, t ≥ t0 ≥ 0,

where a, b, c ∈ C(R+,R+) and
∫∞
t0

[a(s) + b(s)
∫ s

t0
c(τ)dτ ]ds < ∞. Then, the

solution y = 0 of (8) is hS.

Proof. Let x(t) = x(t, t0, x0) and y(t) = y(t, t0, x0). By Theorem 2.3, since the
solution x = 0 of (1) is hS, the solution v = 0 of (2) is hS. Therefore, by Theorem
2.4, the solution z = 0 of (3) is hS. By Lemma 2.1, Lemma 2.2 and the increasing
property of the function h, we have

|y(t)| ≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))|
∣∣∣∣ ∫ s

t0

g(τ, y(τ))dτ

∣∣∣∣ds
≤ c1|y0|h(t)h(t0)−1

+

∫ t

t0

c2h(t)h(s)
−1[a(s)|y(s)|+ b(s)

∫ s

t0

c(τ)|y(τ)|dτ ]ds.

Set u(t) = |y(t)|h(t)−1. Then, by Gronwall’s inequality, we obtain

|y(t)| ≤ c1|y0|h(t)h(t0)−1e
c2

∫ t
t0

[a(s)+b(s)
∫ s
t0

c(τ)dτ ]ds

≤ c|y0|h(t)h(t0)−1, c = c1e
c2

∫ ∞
t0

[a(s)+b(s)
∫ s
t0

c(τ)dτ ]ds

It follows that y = 0 of (8) is hS. Hence, the proof is complete. �
Remark 3.1. In the linear case, we can obtain that if the zero solution x = 0
of (5) is hS, then the perturbed system

y′ = A(t)y +

∫ t

t0

g(s, y(s))ds, y(t0) = y0,

is also hS under the same hypotheses in Theorem 3.1 except the condition of
t∞-similarity.

Remark 3.2. Letting b(s) = 0 in Theorem 3.1, we obtain the same result as
that of Theorem 3.3 in [8].

To investigate an h-system of (8), we need the following lemma.

Lemma 3.2. Let u, p, q, w, r ∈ C(R+,R+) and suppose that, for some c ≥ 0,
we have

u(t) ≤ c+

∫ t

t0

p(s)

∫ s

t0

[q(τ)u(τ) + w(τ)

∫ τ

t0

r(a)u(a)da]dτds, t ≥ t0. (9)

Then

u(t) ≤ c exp(

∫ t

t0

p(s)

∫ s

t0

[q(τ) + w(τ)

∫ τ

t0

r(a)da]dτds), t ≥ t0. (10)
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Proof. Setting v(t) = c+
∫ t

t0
p(s)

∫ s

t0
[q(τ)u(τ)+w(τ)

∫ τ

t0
r(a)u(a)da]dτds, we have

v(t0) = c and

v′(t) = p(t)

∫ t

t0

[q(s)u(s) + w(s)

∫ s

t0

r(a)u(a)da]ds

≤ p(t)

∫ t

t0

[q(s) + w(s)

∫ s

t0

r(a)da]v(s)ds

≤ [p(t)

∫ t

t0

[q(s) + w(s)

∫ s

t0

r(a)da]ds]v(t), t ≥ t0,

(11)

since v(t) is nondecreasing and u(t) ≤ v(t). It follows from the Gronwall in-
equality that (11) yields the estimate (10). �

Theorem 3.3. Suppose that fx(t, 0) is t∞-similar to fx(t, x(t, t0, x0)) for t ≥
t0 ≥ 0 and |x0| ≤ δ for some constant δ > 0. If the solution x = 0 of (1) is an
h-system with a positive continuous function h and g in (8) satisfies

|g(t, y)| ≤ λ(t)|y|+ β(t)

∫ t

t0

γ(s)|y(s)|ds, t ≥ t0, y ∈ Rn,

where λ, β, γ : R+ → R+ is continuous with∫ ∞

t0

1

h(s)

∫ s

t0

[h(τ)λ(τ) + β(τ)

∫ τ

t0

h(r)γ(r)dr]dτds < ∞, (12)

for all t0 ≥ 0, then the solution y = 0 of (8) is an h-system.

Proof. Let x(t) = x(t, t0, x0) and y(t) = y(t, t0, x0). By Theorem 2.3, since the
solution x = 0 of (1) is an h-system, the solution v = 0 of (2) is an h-system.
Therefore, by Theorem 2.4, the solution z = 0 of (3) is an h-system. By Lemma
2.1 and Lemma 2.2, we have

|y(t)| ≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))|
∫ s

t0

|g(τ, y(τ))|dτds

≤ c1|y0|h(t)h(t0)−1

+

∫ t

t0

c2
h(t)

h(s)
[

∫ s

t0

h(τ)λ(τ)
|y(τ)|
h(τ)

+ β(τ)

∫ τ

t0

h(r)γ(r)
|y(r)|
h(r)

drdτ ]ds.

Setting u(t) = |y(t)|h(t)−1 and using Lemma 3.2, we obtain

|y(t)| ≤ c1|y0|h(t)h(t0)−1e
c2

∫ t
t0

1
h(s)

∫ s
t0

[h(τ)λ(τ)+β(τ)
∫ τ
t0

h(r)γ(r)dr]dτds

≤ c|y0|h(t)h(t0)−1, t ≥ t0,

where c = c1e
c2

∫ ∞
t0

1
h(s)

∫ s
t0

[h(τ)λ(τ)+β(τ)
∫ τ
t0

h(r)γ(r)dr]dτds
. It follows that y = 0 of

(8) is an h-system. Hence, the proof is complete. �

Remark 3.3. Letting β(t) = 0 in Theorem 3.3, we have the similar result as
that of Theorem 2.5 in [7].
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