DOI QR코드

DOI QR Code

REMARKS ON THE WIENER POLARITY INDEX OF SOME GRAPH OPERATIONS

  • Faghani, Morteza (Department of Mathematics, Faculty of Mathematics, Statistics and Computer Science, University of Kashan) ;
  • Ashrafi, Ali Reza (Department of Mathematics, Faculty of Mathematics, Statistics and Computer Science, University of Kashan) ;
  • Ori, Ottorino (Department of Mathematics, Faculty of Mathematics, Statistics and Computer Science, University of Kashan)
  • Received : 2011.07.20
  • Accepted : 2011.10.17
  • Published : 2012.05.30

Abstract

The Wiener polarity index$W_p(G)$ of a graph G of order $n$ is the number of unordered pairs of vertices $u$ and $v$ of G such that the distance $d_G(u,v)$ between $u$ and $v$ is 3. In this paper the Wiener polarity index of some graph operations are computed. As an application of our results, the Wiener polarity index of a polybuckyball fullerene and $C_4$ nanotubes and nanotori are computed.

Keywords

References

  1. A. R. Ashrafi, T. Doslic and A. Hamzeh, Zagreb coindices of graph operations, Discrete Appl. Math. 158 (2010), 1571-1578. https://doi.org/10.1016/j.dam.2010.05.017
  2. A. R. Ashrafi, A. Hamzeh and S. Hossein-Zadeh, Calculation of some topological indices of splices and links of graphs, J. Appl. Math. & Informatics, 29 (1) (2011), 327-335.
  3. H. Deng, H. Xiao and F. Tang, On the extremal Wiener polarity index of trees with a given diameter, MATCH Commun. Math. Comput. 63 (2010), 257-264.
  4. H. Deng, On the extremal Wiener polarity index of chemical trees, MATCH Commun. Math. Comput. Chem., in press.
  5. M. V. Diudea, I. Gutman and L. Jantschi, Molecular Topology, Huntington, NY, 2001.
  6. T. Doslic, Splices, links, and their valence-weighted Wiener polynomials, Graph Theory Notes NY 48 (2005) 47-55.
  7. W. Du, X. Li and Y. Shi, Algorithms and extremal problem on Wiener polarity index, MATCH Commun. Math. Comput. Chem. 62 (2009), 235-244.
  8. A. Graovac and T. Pisanski, On the Wiener index of a graph, J. Math. Chem. 8 (1991), 53-62. https://doi.org/10.1007/BF01166923
  9. I. Gutman, A property of the Wiener number and its modifications, Indian J. Chem. 36A (1997), 128-132.
  10. I. Gutman, A. A. Dobrynin, S. Klavzar and L. Pavlovic, Wiener-type invariants of trees and their relation, Bull. Inst. Combin. Appl. Math. 40 (2004), 23-30.
  11. A. Hamzeh, S. Hossein-Zadeh and A. R. Ashrafi, y-Wiener index of composite graphs, Appl. Math. Lett., 24 (2011), 10991104.
  12. H. Hosoya, Mathematical and chemical analysis of Wiener's polarity number, in: D. H. Rouvray, R. B. King(Eds.), Topology in Chemistry Discrete Mathematics of Molecules, Horwood, Chichester, 2002.
  13. S. Hossein-Zadeh, A. Hamzeh and A. R. Ashrafi, Wiener-type Invariants of some Graph Operations, FILOMAT, 23 (2009), 103-113. https://doi.org/10.2298/FIL0903103H
  14. W. Imrich and S. Klavzar, Produt graphs; structure and recognition, John Wiley & Sons, New York, USA, 2000.
  15. M. H. Khalifeh, H. Yousefi-Azari and A. R. Ashrafi, The first and second Zagreb indices of some graph operations, Discrete Appl. Math. 57 (2009), 804-811.
  16. M. H. Khalifeh, H. Yousefi-Azari, A. R. Ashrafi and S. G. Wagner, Some new results on distance-based graph invariants, European J. Comb. 30 (2009), 1149-1163. https://doi.org/10.1016/j.ejc.2008.09.019
  17. M. H. Khalifeh, H. Yousefi-Azari and A. R. Ashrafi, The hyper-Wiener index of graph operations, Comput. Math. Appl. 56 (2008), 1402-1407. https://doi.org/10.1016/j.camwa.2008.03.003
  18. M. H. Khalifeh, H. Yousefi-Azari, A. R. Ashrafi and I. Gutman, The edge Szeged index of product graphs, Croat. Chem. Acta. 81 (2008), 277-281.
  19. M. H. Khalifeh, H. Yousefi-Azari and A. R. Ashrafi, Another aspect of graph invariants depending on the path metric and an application in nanoscience, Comput. Math. Appl. 60 (2010), 2460-2468. https://doi.org/10.1016/j.camwa.2010.08.042
  20. S. Klavzar, A. Rajapakse and I. Gutman, The Szeged and the Wiener index of graphs, Appl. Math. Lett. 9 (1996), 45-49. https://doi.org/10.1016/0893-9659(96)00071-7
  21. S. Klavzar, On the PI index: PI-partitions and Cartesian product graphs, MATCH Commun. Math. Comput. Chem. 57 (2007), 573-586.
  22. H. Khodashenas and M. J. Nadjafi-Arani, Distance-Based Topological Indices of Tensor Product of Graphs, Submited.
  23. H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl and R. E. Smalley, $C_{60}:\;Buckminsterfullerene,$ Nature 318 (1985), 162-163. https://doi.org/10.1038/318162a0
  24. H. W. Kroto, J. E. Fichier and D. E. Cox, The Fullerene, Pergamon Press, New York, 1993.
  25. I. Lukovits and W. Linert, Polarity-numbers of cycle-containing structures, J. Chem. Inf. Comput. Sci. 38 (1998), 715-719. https://doi.org/10.1021/ci970122j
  26. D. Stevanovic, Distance Regularity of Compositions of Graphs, Appl. Math. Lett. 17 (2004), 337-343. https://doi.org/10.1016/S0893-9659(04)90072-9
  27. S. Tong and H. Deng, The characterization of trees with the first three smallest Wiener polarity indices, submitted.
  28. N. Trinajstic, Chemical Graph Theory, CRC Press, Boca Raton, FL. 1992.
  29. H. Wiener, Structural determination of paraffin boiling points, J. Amer. Chem. Soc. 69 (1947), 17-20.
  30. H. Xiao and H. Deng, The maximum Wiener polarity index of chemical trees with k pendants, submitted.
  31. Z. Yarahmadi, T. Doslic and A.R. Ashrafi, The bipartite edge frustration of composite graphs, Discrete Appl. Math. 158 (2010), 1551-1558. https://doi.org/10.1016/j.dam.2010.04.010
  32. Y. N. Yeh and I. Gutman, On the sum of all distances in composite graphs, Discrete Appl. Math. 135 (1994), 359-365. https://doi.org/10.1016/0012-365X(93)E0092-I
  33. H. Yousefi-Azari, B. Manoochehrian and A. R. Ashrafi, The PI index of product graphs, Appl. Math. Lett. 21 (2008), 624-627. https://doi.org/10.1016/j.aml.2007.07.015