DOI QR코드

DOI QR Code

응력 기반 간극수압 모델 개발

Development of Stress Based on Pore Pressure Model

  • 박두희 (한양대학교 건설환경공학부) ;
  • 안재광 (한양대학교 건설환경공학부) ;
  • 김진만 (부산대학교 사회환경시스템공학부)
  • Park, Du-Hee (Dept. of Civil and Environmental Engineering., Hanyang Univ.) ;
  • Ahn, Jae-Kwang (Dept. of Civil and Environmental Engineering., Hanyang Univ.) ;
  • Kim, Jin-Man (Dept. of Civil Engineering., Pusan National Univ.)
  • 투고 : 2012.03.08
  • 심사 : 2012.05.04
  • 발행 : 2012.05.31

초록

반복하중에 의하여 유발되는 과잉간극수압 예측의 중요성은 잘 알려져 있지만 이를 고려한 유효응력해석은 수치 모델 변수 산정의 어려움으로 인하여 극히 드물게 수행되고 있다. 본 논문에서는 반복하중에 의하여 흙에 발생하는 과잉간극수압을 예측하는 새로운 응력 기반 수치적 모델을 개발하였다. 본 모델의 가장 큰 장점은 진동삼축시험으로 부터 획득된 CSR-N 곡선만으로 모든 변수를 결정할 수 있다는 점이다. 이 모델의 추가적인 장점은 모든 하중형태에 대해서 적용될 수 있으므로 시간영역 유효응력해석 프로그램에 적용될 수 있다는 점이다. 개발된 모델의 정확성은 문헌에 제시된 시험결과와 국내에서 수행된 시험결과와의 비교를 통하여 검증되었다. 나아가 기존의 응력기반 모형과의 성능 비교 결과 제안된 모델은 정확성과 사용 편리성이 모두 우수한 것으로 나타났다.

Even though the importance of predicting build-up of pore pressure under cyclic loading is recognized, effective stress analysis is rarely performed due to difficulties in selecting the parameters for the pore pressure model. In this paper, a new stress based numerical model for predicting pore pressure under cyclic loading is developed. The main strength of the model is that it is easy-to-use, requiring only the CSR-N curve in selecting the parameters. Another advantage of the model is that it can be used for any loading pattern and therefore can be implemented in an effective stress time-domain dynamic analysis code. The accuracy of the model is validated through its comparisons with measurements in literature and laboratory test data collected in Korea. Further comparisons with another stress based pore pressure model highlighted the superiority of the proposed model.

키워드

참고문헌

  1. 건설교통부 (1997), 내진설계기준연구(II), p.493.
  2. Booker, J. R., Rahman, M., and Seed, H. B. (1976), GADFLEA: A computer program for the analysis of pore pressure generation and dissipation during cyclic or earthquake loading, California Univ., Berkeley (USA). Earthquake Engineering Research Center.
  3. Borja, R. I., Chao, H. Y., Montáns, F. J., and Lin, C. H. (1999), "Nonlinear ground response at Lotung LSST site", Journal of Geotechnical and Geoenvironmental Engineering, Vol.125, No.3, pp.187. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:3(187)
  4. Byrne, P. M., Park, S. S., Beaty, M., Sharp, M., Gonzalez, L., and Abdoun, T. (2004), "Numerical modeling of liquefaction and comparison with centrifuge tests", Canadian Geotechnical Journal, Vol.41, No.2, pp.193-211. https://doi.org/10.1139/t03-088
  5. Carraro, J., Bandini, P., and Salgado, R. (2003), "Liquefaction resistance of clean and nonplastic silty sands based on cone penetration resistance", Journal of Geotechnical and Geoenvironmental Engineering, Vol.129, No.11, pp.965-976. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:11(965)
  6. Castro, G., Consultants, G., Youd, I. T. L., Idriss, I., Arango, I., Christian, J. T., Dobry, R., Finn, W. D. L., Harder Jr, L.F., and Hynes, M. E. (2001), "Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils", Journal of Geotechnical and Geoenvlronmental Engineering.
  7. Derakhshandi, M., Rathje, E. M., Hazirbaba, K., and Mirhosseini, S. (2008), "The effect of plastic fines on the pore pressure generation characteristics of saturated sands", Soil Dynamics and Earthquake Engineering, Vol.28, No.5, pp.376-386. https://doi.org/10.1016/j.soildyn.2007.07.002
  8. Dobry, R., Vasquez-Herrera, A., Mohamad, R., and Vucetic, M. (1985), "Liquefaction flow failure of silty sand by torsional cyclic tests": ASCE, pp.29-50.
  9. Finn, W. D. L., and Bhatia, S. (1982), "Prediction of seismic porewater pressures", 10th ICSMFE. Stockholm, p.6.
  10. Finn, W. D. L., Lee, K. W., and Martin, G. R. (1977), An effective stress model for liquefaction.
  11. Green, R., Mitchell, J., and Polito, C. (2000), "An Energy-Based Excess Pore Pressure Generation Model for Cohesionless Soils": Citeseer, pp.383-390.
  12. Green, R. A. (2001), Energy-based evaluation and remediation of liquefiable soils, Virginia Polytechnic Institute and State University
  13. Itasca (2008), FLAC (Fast Lagrangian Analyses of Continua).
  14. Ivsic, T. (2006), "A model for presentation of seismic pore water pressures", Soil Dynamics and Earthquake Engineering, Vol.26, No.2-4, pp.191-199. https://doi.org/10.1016/j.soildyn.2004.11.025
  15. Koester, J. P. (1994), "The influence of fines type and content on cyclic strength", In: S. Prakash, and P. Dakoulas, Eds., Ground Failures Under Seismic Conditions, Geotech: ASCE, pp.
  16. Lee, K. L., and Albaisa, A. (1974), "Earthquake induced settlements in saturated sands", Journal of the Geotechnical Engineering Division, Vol.100, No.4, p.10.
  17. Li, X., Wang, Z., and Shen, C. (1992), "SUMDES: A nonlinear procedure for response analysis of horizontally-layered Sites", p.86.
  18. Mazzoni, S., McKenna, F., and Fenves, G. L. (2005), "OpenSees command language manual", Pacific Earthquake Engineering Research (PEER) Center.
  19. Park, I. J., Shin, Y. S., Choi, J. S., and Kim, S. I. (1999), "A study on the conventional liquefaction analysis and application to Korean liquefaction hazard zones", KGS Spring '99 National Conference. Seoul, Korea, pp.431-438.
  20. Polito, C. P., Green, R. A., and Lee, J. (2008), "Pore pressure generation models for sands and silty soils subjected to cyclic loading", Journal of Geotechnical and Geoenvironmental Engineering, Vol.134, p.1490. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:10(1490)
  21. Seed, H. B., Martin, P. P., and Lysmer, J. (1975), The generation and dissipation of pore water pressures during soil liquefaction, EERC 75-29, California.
  22. Silver, M. L., and Park, T. K. (1976), "LIquefaction potential evaluated from cyclic strain-controlled properties tests on sand", Soils and Foundations, Vol.16, No.3, pp.15.
  23. Troncoso, J., and Verdugo, R. (1985), "Silt content and dynamic behavior of tailing sands", 12th International Conference on Soil Mechanics and Foundation Engineering, p.4.
  24. Vucetic, M. (1986), Pore pressure buildup and liquefaction of level sandy sites during earthquakes, Rensselaer Polytechnic Institute, pp.
  25. Xenaki, V., and Athanasopoulos, G. (2003), "Liquefaction resistance of sand-silt mixtures: an experimental investigation of the effect of fines", Soil Dynamics and Earthquake Engineering, Vol.23, No.3, pp.1-12.

피인용 문헌

  1. 1차원 유효응력개념의 지반응답해석을 통한 포항지진의 액상화 현상 규명 vol.34, pp.8, 2012, https://doi.org/10.7843/kgs.2018.34.8.37