DOI QR코드

DOI QR Code

Diatom 혼합토의 공학적 특성

Engineering Characteristics of Diatom Modified Soil Mixture

  • 김규선 (삼성물산 건설부문 기술연구센터)
  • Kim, Kyu-Sun (Construction Technology Center, Samsung C&T Corporation)
  • 투고 : 2012.02.06
  • 심사 : 2012.04.17
  • 발행 : 2012.05.31

초록

Diatom 성분이 함유된 자연 퇴적토층의 공학적 특성은 대상층의 변형 및 강도의 특이한 특성 때문에 다수의 연구자에 의해 수 십년간 연구되어 왔다. 원반형 혹는 원통형 모양을 한 diatom의 존재는 재료의 낮은 압축성, 높은 투수성, 높은 전단강도 특성을 나타내게 하며, 이러한 특이한 차이점들은 큰 내부입자 간극과 모난 입자의 결합력으로 diatom의 특성을 나타낸다. 이러한 현상은 흙의 공학적 특성을 변화시켜서 지반개량 재료로써 diatom을 이용할 수 있음을 의미한다. 본 논문은 diatom 개량토의 공학적 특성을 연구하기 위해 diatom-kaolin 혼합토의 공학적 특성을 통상적인 지반공학 실험 및 탄성파를 이용한 미소변형 실험, 전자기파를 이용한 전기저항 측정실험 등을 통하여 평가하였다. 실험 결과에 따르면, diatom 함유량에 따라 흙의 공학적 개선이 이루어진 것을 확인할 수 있었으며, 높은 응력에서 diatom 입자의 결합이 파괴되어 일부 공학적 특성이 저감되는 것을 확인 할 수 있었다.

The engineering characteristics of natural sediments containing diatom microfossils have been investigated for their abnormal deformation and strength behavior for a few decades. The presence of disk or hollow shape diatoms causes low compressibility, high hydraulic conductivity, and high shear strength of sediments. Some of these unusual differences show the characteristic of diatom owing to the interlocking of large interparticle porosity and angular particles. This phenomenon implies the possible use of diatom as modification materials to change the engineering performance of soil mixtures. This paper describes the engineering characteristics of diatom-kaolin mixture to investigate the engineering properties of diatom modified soils using conventional geotechnical tests and elastic and electromagnetic wave propagation tests. Experimental test results show the performance improvement by increasing diatom contents and the performance degradation by the breakage of interlocking between diatom particles under high effective stress.

키워드

참고문헌

  1. 이창호, 윤태섭, 산타마리나, 박장준, 이종섭(2009), "동해, 울릉분지 심해토의 지반공학특성", 한국지반공학회 논문집, 제25권 6호, pp.17-29.
  2. ASTM D2345 (2004), Standard Test Methods for One-Dimensional Consolidation Properties of Soils Using Incremental Loading. Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA.
  3. ASTM D3080 (1998), Standard Test Methods for Direct Shear Test of Soils Under Consolidated Drained Conditions. Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA.
  4. Day, R. W. (1995), "Engineering properties of diatomaceous fill", Journal of Geotechnical Engineering, Vol.121, No.12, pp.908-910. https://doi.org/10.1061/(ASCE)0733-9410(1995)121:12(908)
  5. Diaz-Rodriguez, J. A., Lozano-Santa Cruz, R., Davila-Alcocer, V. M., Vallejo, E., and Giron, P. (1998), "Physical, chemical, and mineralogical properties of Mexico City sediments: a geotechnical perspective", Canadian Geotechnical Journal, Vol.35, No.4, pp.600-610. https://doi.org/10.1139/t98-026
  6. Duffy, J. and Mindlin, R. D. (1957), "Stress-strain relations of a granular medium", Journal of Applied Mechanics., Vol.24, No.4, pp.585-593.
  7. Duncan, J. M., Byrne, P., Wong, K. S. and Mabry, P. (1980), Strength, Stress-Strain and Bulk Modulus Parameters for Finite Element Analysis of Stresses and Movements in Soil Masses. Report No. UCB/GT/80-01, University of California, Berkeley, USA, 70p.
  8. Hardin, B. O. and Richart, F. E. (1963), "Elastic wave velocities in granular soils", Journal of Soil Mechanics and Foundation Engineering Division, Vol.89, No. SM1, pp.33-65.
  9. Hong, Z., Tateishi, Y., and Han, J. (2006), "Experimental study of macro- and microbehavior of natural diatomite", Journal of Geotechnical and Geoenvironmental Engineering, Vol.132, No.5, pp.603-610. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:5(603)
  10. Khilnani, K. and Capik, M. L. (1989), "Diatomaceous soils: a new approach", Civil Engineering, ASCE, Vol.59, No.2, pp.68-70.
  11. Locat, J. and Tanaka, H. (2001), "A new class of soils: fossiliferous soils", Proceedings of the 15h International Conference on Soil Mechanics & Geotechnical Engineering, Istanbul, Turkey. pp.2295-2300.
  12. Mesri, G, Rokhsar, A., and Bohor, B. F. (1975), "Composition and compressibility of typical samples of Mexico City clay", Geotechnique, Vol.25, No.3, pp.527-554. https://doi.org/10.1680/geot.1975.25.3.527
  13. Mitchell, J. K. and Soga, K. (2005), Fundamentals of Soil Behavior, John Wiley & Sons. New Jersey.
  14. Ohtsubo, M., Egashira, K., Tanaka, H., and Mishima, O. (2002), "Clay minerals and geotechnical index properties of marine clays in east Asia", Marine Georesources and Geotechnology, Vol.20, No.4, pp.223-235. https://doi.org/10.1080/03608860290051921
  15. Palomino, A. M., Kim, S., Summitt, A., and Fratta, D. (2011), "Impact of diatoms on fabric and chemical stability of diatom-kaolin mixtures", Applied Clay Science, Vol.51, No.3, pp.287-294. https://doi.org/10.1016/j.clay.2010.12.002
  16. Santamarina, J. C., Klein. K. A., and Fam, M. A. (2001), Soils and Waves, John Wiley & Sons, Chichester, UK.
  17. Shiwakoti, D. R., Tanaka, H., Tanaka, M., and Locat, J. (2002), "Influence of diatom microfossils on engineering properties of soils", Soils and Foundations, Vol.42, No.3, pp.1-17.
  18. Tanaka, H. and Locat, J. (1999), "A microstructural investigation of Osaka Bay clay: the impact of microfossils on its mechanical behaviour", Canadian Geotechnical Journal, Vol.36, No.3, pp. 493-508. https://doi.org/10.1139/t99-009
  19. Tanaka, H. (2000), "Re-examination of established relations between index properties and soil parameters", Coastal Geotechnical Engineering in Practice: Proceedings of the International Symposium, IS-Yokohama 2000, pp.3-24.
  20. Tanaka, H., Shiwakoti, D. R., Omukai, N., Rito, F., Locat, J., and Tanaka, M. (2003), "Pore size distribution of clayey soils measured by mercury intrusion porosimetry and its relation to hydraulic conductivity", Soils and Foundations, Vol.43, No.6, pp.63-73.