DOI QR코드

DOI QR Code

화성암의 화학적 변질지수에 관한 연구

A Study on the Chemical Index of Alteration of Igneous Rocks

  • 최은경 ((주)지아이, 지반정보연구소) ;
  • 김성욱 ((주)지아이, 지반정보연구소) ;
  • 김인수 (부산대학교 지질환경과학과) ;
  • 이규환 (건양대학교 건설환경공학과)
  • 투고 : 2011.11.23
  • 심사 : 2012.05.08
  • 발행 : 2012.05.31

초록

암석이 풍화되어 감에 따라 지반 지지력이 감소되는 것은 잘 알려진 사실이다. 토목 구조물의 시공과 설계에서는 암석의 풍화에 의한 지반정수의 변화가 많이 인용되고 있는데 본 연구는 우리나라 면적의 45.5%에 해당되는 화성암을 대상으로 풍화정도에 따른 화학적 변질지수의 값의 범위와 풍화에 따른 광물조성의 변화를 분석하였다. 대상 시료에 대하여 현재까지 제안된 풍화지수들을 산정하였으며, 유의성 분석을 통해서 지수간의 높은 상관성을 확인하였다. 각각의 풍화지수들은 풍화가 진행될수록 값이 증가 또는 감소하는 경향을 보이는데, 화학적 변질지수(CIA)는 암종이나 광물에 따른 값이 기존연구에서 제시되어 있어 풍화의 정도를 판별하기 용이하므로 본 연구에서는 이를 이용하여 풍화정도를 평가하였다. 풍화에 따른 광물학적 변화는 산성질의 영역에 포함되는 암석은 풍화가 진행되어 감에 따라 기반암-일라이트-녹니석-카올린의 경로를 따르나 고철질의 영역에 포함되는 암석은 풍화 진행에 따라 기반암-스멕타이트-녹니석-카올린의 경로를 주로 따르게 된다. 즉 고철질의 암석에서는 풍화과정에서 양이온교환능이 높은 팽윤성의 점토광물인 스멕타이트의 함량이 증가하는 경향을 보인다. 화학적 풍화지수는 화학성분의 상대적인 변화와 비율을 근거로 작성된 지수이므로 암종별로 값의 범위가 넓게 나타나며, 특정 암종의 대표값을 결정하기 어렵다. 그러나 화학적 풍화지수는 다른 풍화정도를 판별하는 기준들과 마찬가지로 정성적인 기준이 아닌 정량적인 기준으로 풍화도를 평가하는 데 활용이 가능한 것으로 판단된다. 또한 특정지역의 풍화정도를 평가하기 위해서는 화학적 변질지수와 함께 풍화광물의 함량비, 풍화에 따른 강도 특성 등을 함께 고려하는 것이 좋을것으로 판단된다.

The weathering process of rocks leads to the reduction of geotechnical bearing capacity. The weathering of granite is frequently used to refer to the degradation of geotechnical property in the design and construction of infra-structure. In this study, the range of values of CIA (chemical index of alteration) and the change of mineral compositions by weathering have been analysed with igneous rock, which covers 45.5% in South Korean territory. Several weathering indices were studied for various rocks found in Korea and significant relationships between different indices were delineated via statistical analysis. The applicability of CIA was found to be the most significant among all weathering indicies. The composition of illite, the secondary weathering residual, generally increases for the felsic rock, and swelling clay material is not included. The weathering of felsic rock will follow a sequential process, starting from bed rock, illite, and chlorite to kaoline. The mafic rock will show weathering process, from bed rock, smectite, and chlorite to kaoline. The intermediate rocks such as andesite and tuff will show similar weathering procedure and the composition of kaoline, chlorite, and smectite tends to increase more than that of illite when the mafic rock is dominated. This means the increase of rock material which has high CEC (cation exchange capacity) during secondary weathering process. However, the characteristics of a specific rock cannot be completely analyzed using merely CIA, since it is exclusively based on chemical composition and corresponding alteration. The CIA can be used to quantify the weathering process in a limited range, and further considerations such as rock composition, strength characteristics will be required to configure the comprehensive weathering impact on any specific region.

키워드

참고문헌

  1. Bahlburg, H. and Dobrzinski, N. (2009), "A review of the Chemical Index of Alteration (CIA) and its application to the study of Neoproterozoic glacial deposits and climate transitions", in press, The Geological Record of Neoproterozoic Glaciations. Geological Society, London, Memoir.
  2. Chang, Seo-Man (2003), "Evaluation on Weathering Intensity and Rock Mass Properties of Weathered Granite", Dankook University, A doctoral dissertation, p.179.
  3. Chung, Hyung-Sik and You, Byung-Ok (1997), "A study on Variation of Rock Strength due to Weathering and It's Estimation". Journal of the korean geotechnical society, 13(6), p.71-93.
  4. Dearman, W. R. (1976), "Weathering classification in the characterisation of rock: a revision", Bulletin of the International Association of Engineering Geology, 13, pp.123-127. https://doi.org/10.1007/BF02634776
  5. Dearman, W. R., Baynes, F. J. and Irfan, T. Y. (1978), "Engineering grading of weathered granite", Engineering Geology, 12, pp.345-374. https://doi.org/10.1016/0013-7952(78)90018-2
  6. De Jayawardena, U.S. (1993), "Use of $H_2O^+$ for classification of residual soils", Geotechnical Engineering of Hard Soils-Soft Rocks. Anagnostopoulos et al. (eds.), Balkema, Rotterdam, pp.169-171.
  7. De Jayawardena, U. S. and IZawa, E. (1994), "A new Chemical Index of Weathering for metamorphic silicate rocks in trophical regions: a study from Sri Lanka", Engineering Geology 36, pp. 303-310. https://doi.org/10.1016/0013-7952(94)90011-6
  8. De Jayawardena, U. S. and Izawa, E. (1994), "Application of present indices of chemical weathering for Precambrian metamorphic rocks in Sri Lanka", Bulletin International Association of Engineering Geology, 49, pp.55-61. https://doi.org/10.1007/BF02595001
  9. Fedo, C. M, Nesbitt, H. W., Young, G. M. (1995), "Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance", Geology 23, pp.921-924. https://doi.org/10.1130/0091-7613(1995)023<0921:UTEOPM>2.3.CO;2
  10. Harnois, L. (1988), "The CIW index: a new Chemical Index of Weathering", Sedimentary Geology 55, pp.319-322. https://doi.org/10.1016/0037-0738(88)90137-6
  11. Irfan, T. Y. and Dearman, W. R. (1978), "Engineering classification and index properties of a weathered granite", Bulletin of the International Association of Engineering Geology, 11, pp.233-244.
  12. Kim, Sung-Hwan, You, Byung-Ok and Jo, Sung-Ro (1997), "A Study on Variation of Rock Strength due to Weathering", Slope Stability committees conference, p.115-136.
  13. Korea Institute of Geoscience and Mineral Resources (1996), 1:250,000 Explanatory Note of the Andong Sheet.
  14. Korea Institute of Geoscience and Mineral Resources (1996), 1:250,000 Explanatory Note of the Daejeon Sheet.
  15. Korea Institute of Geoscience and Mineral Resources (2001), 1:250,000 Explanatory Note of the Gangreung-Sokcho Sheet.
  16. Korea Institute of Geoscience and Mineral Resources (1997), 1:250,000 Explanatory Note of the Gwangju Sheet.
  17. Korea Institute of Geoscience and Mineral Resources (2002), 1:250,000 Explanatory Note of the Mokpo and Yeosu Sheet.
  18. Korea Institute of Geoscience and Mineral Resources (1998), 1:250,000 Explanatory Note of the Pusan Sheet.
  19. Korea Institute of Geoscience and Mineral Resources (1999), 1:250,000 Explanatory Note of the Seoul-Namchonjeom Sheet.
  20. Korea Institute of Geoscience and Mineral Resources (1995), 1:1,000,000 Geology of Korea
  21. Lee, S. G. and de Freitas, M. H. (1989), "A revision of the descriptions and classification of weathered granite and its application to granites in Korea", Quarterly Journal of Engineering Geology and Hydrogeology, 22, pp.31-48. https://doi.org/10.1144/GSL.QJEG.1989.022.01.03
  22. Lee, S. G. (1993), "Weathering of granite", Journal of Geological Society of Korea, 29, pp.396-413.
  23. National Disaster Management Institute (2010), "Improvement of Disaster Warning System for Steep Slope", NIDP-PR-2010-01-02, p.304.
  24. Nesbitt, H. W. and Young, G. M. (1982), "Early Proterozoic climates and plate motions inferred from major element chemistry of lutites", Nature, 299, pp.715-717. https://doi.org/10.1038/299715a0
  25. Parker, A. (1970), "An index of weathering for silicate rocks", Geological Magazine, pp.501-504.
  26. Price, J. R. and Velbel, M. A. (2003), "Chemical weathering indices applied to weathering profile developed on heterogeneous felsic metamorphic parent rocks", Chemical geology, 202, p.397-416. https://doi.org/10.1016/j.chemgeo.2002.11.001
  27. Reiche, P. (1943), "Graphic representation of chemical weathering", Journal of Sedimentary Petrology 13, pp.58-68.
  28. Roaldset, E. (1972), "Mineralogy and geochemistry of Quaternary Clays in Numedal Area, Southern Norway", Narsk. Geol. Tidsskr, 52, pp.335-369.
  29. Ruxton, B. P. (1968), "Measures of the degree of chemical weathering of rocks", Journal of Geology 76, pp.518-527. https://doi.org/10.1086/627357
  30. Sueoka, T., Lee, I. K., Huramatsu, M. and Imamura, S. (1985), "Geomechanical properties and engineering classification for decomposed granite soils in Kaduna district, Nigeria", Proceedings of the First International Conference on Geomechanics in Tropical Lateritic and Saprolitic Soils, Brasil, 1, pp.175-186.
  31. The Geological Society of Korea (1999), "Geology of Korea", sigma press, p.802.
  32. Vogel, D. E. (1975), "Precambrian weathering in acid metavolcanic rocks from the Superior Province, Villebon Township, South-Central Quebec", Canadian Journal of Earth Sciences, 12, pp.2080-2085. https://doi.org/10.1139/e75-183
  33. Vogt, T. (1927), "Sulitjelmafeltets geologi og petrografi", Norges Geologiske Undersokelse. 121, pp.1-560.

피인용 문헌

  1. Geological Values of Seonangbawi Area as A Geological Field Course Site vol.39, pp.2, 2018, https://doi.org/10.5467/JKESS.2018.39.2.164