DOI QR코드

DOI QR Code

Temperature Compensation of Optical FBG Sensors Embedded Tendon for Long-term Monitoring of Tension Force of Ground Anchor

광섬유 센서 내장형 텐던을 이용한 그라운드 앵커의 장기 장력모니터링을 위한 온도보상

  • Sung, Hyun-Jong (Dept. of Civil & Environmental Engrg., Chonnam National Univ.) ;
  • Kim, Young-Sang (Dept. of Marine & Civil Engrg., Chonnam National Univ.) ;
  • Kim, Jae-Min (Dept. of Marine & Civil Engrg., Chonnam National Univ.) ;
  • Park, Gui-Hyun (Dept. of Civil & Environmental Engrg., Chonnam National Univ.)
  • 성현종 (전남대학교 일반대학원 건설환경공학과) ;
  • 김영상 (전남대학교 해양토목공학과) ;
  • 김재민 (전남대학교 해양토목공학과) ;
  • 박귀현 (전남대학교 일반대학원 건설환경공학과)
  • Received : 2011.11.07
  • Accepted : 2012.05.04
  • Published : 2012.05.31

Abstract

Ground anchor method is one of the most popular reinforcing technology for slope in Korea. For the health monitoring of slope which is reinforced by permanent anchor for a long period, monitoring of the tension force of ground anchor is very important. However, since electromechanical sensors such as strain gauge and V/W type load cell are also subject to long-term risk as well as suffering from noise during long distance transmission and immunity to electromagnetic interference (EMI), optical FBG sensors embedded tendon was developed to measure strain of 7-wire strand by embedding FBG sensor into the center king cable of 7-wire strand. This FBG sensors embedded tendon has been successfully applied to measuring the short-term anchor force. But to adopt this tendon to long-term monitoring, temperature compensation of the FBG sensors embedded tendon should be done. In this paper, we described how to compensate the effect in compliance with the change of underground temperature during long-term tension force monitoring of ground anchors by using optical fiber sensors (FBG: Fiber Bragg Grating). The model test was carried out to determine the temperature sensitivity coefficient (${\beta}^{\prime}$) of FBG sensors embedded tendon. The determined temperature sensitivity coefficient ${\beta}^{\prime}=2.0{\times}10^{-5}/^{\circ}C$ was verified by comparing the ground temperatures predicted from the proposed sensor using ${\beta}^{\prime}$ with ground temperatures measured from ground thermometer. Finally, temperature compensations were carried out based on ${\beta}^{\prime}$ value and ground temperature measurement from KMA for the tension force monitoring results of tension type and compression type anchors, which had been installed more than 1 year before at the test site. Temperature compensated tension forces are compared with those measured from conventional load cell during the same measuring time. Test results show that determined temperature sensitivity coefficient (${\beta}^{\prime}$) of FBG sensors embedded tendon is valid and proposed temperature compensation method is also appropriate from the fact that the temperature compensated tension forces are not dependent on the change of ground temperature and are consistent with the tension forces measured from the conventional load cell.

그라운드 앵커공법은 현재 우리나라에서 가장 일반적으로 사용되는 사면보강공법들 중 하나이다. 앵커로 보강된 사면의 안정성을 장기간 확인하기 위해서는 그라운드 앵커의 긴장력을 측정하는 것이 매우 중요하다. 그러나 현재 현장에서 주로 사용되는 스트레인게이지 및 V/W타입의 로드 셀은 전자기파에 의한 노이즈 발생이 크고 습기 또는 수분의 영향으로 인해 측정값에 오차가 발생할 수 있으며 자기열화 등으로 장기간의 모니터링에 한계가 있다. 또한 앵커의 개별 텐던에 발생하는 미세한 변화를 정확히 감지할 수 없는 단점이 있어 이를 개선할 수 있는 방안으로 광섬유 센서를 이용하여 강연선의 변형률을 측정할 수 있는 광섬유 센서 내장형 텐던이 개발되었다. 이 광섬유 센서 내장형 텐던은 단기간의 앵커 장력 측정에 성공적으로 적용된 사례가 보고되었으나 장기간에 걸친 장력 변화를 측정하기 위해서는 온도에 의한 광섬유 센서의 변형률을 보상하여야 한다. 이 논문에서는 광섬유 센서 내장형 텐던을 이용하여 그라운드 앵커의 장력모니터링 시 지중온도 변화에 의한 영향을 보상하는 실용적인 방안에 대하여 기술하였다. 먼저 실내실험을 통하여 광섬유 센서 내장형 텐던의 온도반응계수(${\beta}^{\prime}$)를 $2.0{\times}10^{-5}/^{\circ}C$로 결정하고 실제 현장에 설치된 광섬유 센서를 이용하여 깊이별 지중온도 변화값을 측정하였다. 연구 대상지역(여수)의 기상청 지중온도 측정 결과 자료와의 비교를 통하여 결정된 온도반응계수(${\beta}^{\prime}$)를 이용한 광섬유 센서 내장형 텐던의 온도반응 성능을 검증하였다. 최종적으로 광섬유 센서 내장형 텐던을 이용하여 실제 사면에 설치된 인장형 앵커와 압축형 앵커의 계절별 긴장력을 모니터링하고 기상청 지중온도 측정자료와 온도반응계수를 이용하여 온도보상을 실시하여 기존 V/W타입의 로드 셀 측정 결과와 비교하였다. 제안된 광섬유 센서 내장형 텐던의 온도반응계수와 기상청 지중온도 측정결과를 이용한 앵커의 온도보상 방법에 의해 측정된 긴장력 모니터링 결과가 계절에 따른 지중온도 변화에 상관없이 로드 셀 결과와 일관성 있게 비교되어 제안된 온도보상 방법이 매우 실용적이며 합리적인 것으로 나타났다.

Keywords

References

  1. Chang, K. T., Han, H. S., and Yoo, B. S. (2003), "Estimation of Slope Behavior by Soil Temperature", Journal of Korean Geotechnical Society(KGS), Vol.19, No.6, pp.407-418.
  2. Chun, B. S., Nam, S. S., and Choi, H. G. (1993), "Failure Case Study of Retaining Wall Site Measuring Measurement", Proceedings of Korea Society of Civil Engineers (KSCE) Conference 1993, KSCE, pp.629-632.
  3. FHWA-IF-99-015 (1999), "Ground Anchors and Anchored Systems".
  4. Haran, F. M., Rew, J. K., and Foote, P. D. (1998), "A strain-isolated fibre Bragg grating sensor for temperature compensation of fibre Bragg grating strain sensors", Measurement of Science Technology, Vol.9, No.8, pp.1163-1166. https://doi.org/10.1088/0957-0233/9/8/004
  5. Hill, K. O. and Meltz, G. (1997), "Fiber Bragg Grating Technology Fundamentals and Overview", IEEE J. Lightwave Technol., Vol.15, No.8, pp.1263-1276. https://doi.org/10.1109/50.618320
  6. Hong, W. P., Yun, J. M., and Song, Y. S. (2004), "Lateral Earth Pressure acting on Anchored Retention Walls installed in Cut Slope", Journal of KSCE, Vol.24, No.2, pp.125-133.
  7. Huh, B. J., Kim, C. K., Jung, Y. G., and Chun, B. S. (2010), "A Study on the Long-Term Behavior Characteristics of Buoyancy-Resistant Permanent Anchor", Journal of Korean Geo-Environmental Society, Vol.11, No.12, pp.27-35.
  8. Iwashima, T., Inoue, A., Shigematsu, M., Nishimura, M., and Hattori, Y. (1997), "Temperature compensation technique for fiber bragg gratings using liquid crystalline polymer tubes", ELECTRONICS LETTERS, Vol.33, No.5, pp.417-418. https://doi.org/10.1049/el:19970289
  9. James, S. W., Dockney, M. L., and Tatam, R. P. (1996), "Simultaneous independent temperature and strain measurement using in fibre Bragg grating sensors", ELECTRONICS LETTERS, Vol.32, No.12, pp.1133-1134. https://doi.org/10.1049/el:19960732
  10. Jung, D. W. (2005), "Fabrication of A-EFPI and temperature-compensated FBG fiber optic sensors, and their applications to strain measurement", Master Thesis, Hanyang University.
  11. Jung, J. H., Nam, H., Lee, J. H., Park, N. K., and Lee, B. H. (1999), "Simultaneous measurement of strain and temperature by use of a single-fiber Bragg grating and erbium-doped fiber amplifier", APPLIED OPTICS, Vol.38, No.13, pp.2749-2751. https://doi.org/10.1364/AO.38.002749
  12. Kim, J. M., Kim, Y. S., Kim, H. W., Seo, D. N., and Yun, C. B. (2007), "Development of Smart Tendon Instrumented With Optical FBG Sensors", Journal of Computational Structural Engineering Institute of Korea, Vol.20, No.2, pp.121.
  13. Kim R. H., Lee, W. J., Yoon, H. K., and Lee, J. S. (2009a), "Development of Temperature Compensated Micro Cone by using Fiber Optic Sensor", Journal of KSCE, Vol.29, No.4, pp.163-174.
  14. Kim, Y. S., Seo, D. N., and Kim, J. M. (2008), "Development and Application of A Smart Anchor With Optical FBG Sensors", Proceedings of KGS Spring National Conference 2008, pp.393-398.
  15. Kim, Y. S., Seo, D. N., Kim, J. M., and Sung, H. J. (2009b), "Load Transfer Characteristics of the 7-wire strand using FBG Sensor Embedded Smart Tendon", Journal of Korea Society of Hazard Mitigation, Vol.9, No.5, pp.79-86.
  16. Kim, Y. S., Sung, H. J., Kim, H. W., and Kim, J. M. (2011), "Monitoring of tension force and load transfer of ground anchor by using optical FBG sensors embedded tendon", Smart Structures and Systems, Vol.7(4), pp.303-317. https://doi.org/10.12989/sss.2011.7.4.303
  17. Moerman, W., Taerwe, L., Waele, W. D., Degrieck, J., and Himpe, J. (2005), "Measuring Ground Anchor Forces of a Quay Wall with Bragg Sensors", Journal of Structural Engineering, ASCE, Vol.131(2), pp.322-328. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:2(322)
  18. Sung, H. J., Kim, Y. S., Kim, J. M., and Park, G. H. (2011), "Tension Force Monitoring of Tension Type Ground Anchor Using Optical FBG Sensors", Journal of KGS, Vol.29, No.6, pp.17-26.
  19. Yhim, S. S., Lee, J. S. (1999), "Determination of Initial Prestress Force of Earth Anchors in Rock on Excavation", Journal of KSCE, Vol.19, No.3-1, pp.177-187.
  20. Zhou, Z. and Ou, J. (2004), "Techniques of temperature compensation for FBG strain sensors used in long-term structural monitoring", APCOM 2004, Khabarovsk, Russia, pp.465-471.

Cited by

  1. Evaluation of Relationship between Tensile Force of Anchor and Safety Factor of Slope through Numerical Analysis vol.13, pp.5, 2013, https://doi.org/10.9798/KOSHAM.2013.13.5.103
  2. 브릴루앙 광 상관영역 기반 분포형 광섬유를 활용한 도시철도 구조물의 모니터링 적용성 평가 vol.19, pp.9, 2012, https://doi.org/10.14481/jkges.2018.19.9.13
  3. Analysis of Long-Term Prestress Loss in Prestressed Concrete (PC) Structures Using Fiber Bragg Grating (FBG) Sensor-Embedded PC Strands vol.11, pp.24, 2021, https://doi.org/10.3390/app112412153