참고문헌
- I.Akkerman, Y. Bazilevs, V.M. Calo, T.R.J. Hughes and S. Hulshof, The role of continuity in residual-based variational multiscale modeling of turbulence, Computational Mechanics., 41 (2008), 371-78.
- Y. Bazilevs, L. Beirao de Veiga, J.A. Cottrell, T.J.R. Hughes, G. Sangali, Isogeometric analysis: approximation, stability and error estimates for h-refine meshes, Mathematical Models and Methods in applied Science, 16 (2006), 1-60. https://doi.org/10.1142/S0218202506001030
- Y. Bazilevs, V.M. Calo, J.A. Cottrell, T.J.R Hughes, A. Reali and G. Scovazzi, Variational multiscale residualbased turbulence modeling for large eddy simulation of incompressible flows, Comput. Methods Appl. Mech. Eng., 197 (2007), 173-201. https://doi.org/10.1016/j.cma.2007.07.016
- A.N. Brooks and T.J.R. Hughes, Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput Methods Appl. Mech. Eng., 32 1989, 199-259.
- V.M. Calo, Residual-based Multiscale Turbulence Modeling:Finite Volume Simulation of Bypass Transition, PhD thesis, Department of Civil and Environmental Engineering, Standford University, 2004.
- J. Chung and G.A. Hulbert, A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized alpha - method, J. Appl. Mech., 60 (1993), 371-75. https://doi.org/10.1115/1.2900803
- R. Codina, J. Principe, O. Guasch and S. Badia, Time dependent subscales in the stabilized finite element approximation of incompressible flow problems, Comput. Methods Appl. Mech. Eng., 196 (2007), 2413-30. https://doi.org/10.1016/j.cma.2007.01.002
- J.A. Cottrell, T.J.R. Hughes and Y.Bazilevs, Isogeometric Analysis. Towards integration of CAD and FEA, Wiley, 2009.
- J. A. Cottrell, T.J.R. Hughes and A. Reali, Studies of Refinement and Continuity in Isogeometric Structural Analysis, Comput. Methods Appl. Mech. Eng., 196 (2007) , 4160-4183. https://doi.org/10.1016/j.cma.2007.04.007
- Y. Ghaffari Motlagh, H.T. Ahn, Laminar and turbulent channel flow simulation using residual based variational multi-scale method, JMST, 26 (2012) ,447-454.
- J. Holmen, T.J.R. Hughes, A.A. Oberai and G.N. Wells, Sensitivity of the scale partition for variational multiscale LES of channel flow, Phys. Fluids, 16 (2004),824-827. https://doi.org/10.1063/1.1644573
- T.J.R. Hughes, Multiscale phenomena: Green functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and origins of stabilized methods, Comput. Methods Appl. Mech. Eng., 127 (1995), 387-401. https://doi.org/10.1016/0045-7825(95)00844-9
- T.J.R. Hughes, V.M. Calo and G. Scovazzi, Variational and multiscale methods in turbulence in: W.Gutkowski,T.A. Kowalewski (Eds.), Proceedings of the XXI International Congress of Theoretical and Applied Mechanics (IUTAM), Kluwer,2004.
- T.J.R. Hughes, J.A. Cottrell and Y. Bazilevs, Isogeometric analysis: CAD,finite elements, NURBS, exact geometry, and mesh refinement, Comput. Methods. Appl. Mech. Eng., 194 (2005), 4135-4195. https://doi.org/10.1016/j.cma.2004.10.008
- T.J.R Hughes, L.P. Franca and G. Hulbert, A new finite element formulation for computational fluid dynamics: VIII. The Galerkin least squares method for advective-diffusive equations, Comput. Methods Appl. Mech. Eng., 73 (1989), 173-189. https://doi.org/10.1016/0045-7825(89)90111-4
- T.J.R. Hughes and M. Mallet, A few finite element formulation for fluid dynamics: III. The generalized streamline operator for multidimensional advective-diffusive systems, Comput Methods Appl Mech Eng 85 (1986), 305-328.
- T.J.R. Hughes and G. Sangalli, Variational multiscale analysis: The fine-scale Green's function, projection, optimization, localization, and stabilized methods, SIAM Journal on Numerical Analysis, 45 (2007), 539-557. https://doi.org/10.1137/050645646
- T.J.R. Hughes, G. Scovazzi and L.P. Franca, Multiscale and stabilized methods, in: E. Stein,R. de Borst,T.J.R. Hughes (Eds.),Encyclopedia of Computational Mechanics, Computational Fluid Dynamics, 3, Wiley, 2004.
- K.E. Jansen, C.H. Whiting and G.M. Hulbert, A generalized alpha-method for integrating the filtered Navier- Stokes equations with a stabilized finite element method, Comput. Methods Appl. Mech. Eng., 190 (1999), 305-319.
- L. Piegl, W. Tiller, The NURBS book,Monographs in visual communication,second ed., Springer-Verlag, New York,1997.
- F.M. White, Fliud Mechanics ,third ed., Mc Graw-Hill, New York,1994.