References
- M. F. Neuts, Matrix-Geometric Solutions in Stochastic Models: An Algorithmic Approach. Dover Publications, Inc, 1994.
- A. Bobbio, A. Horvath, M. Scarpa, and M. Telek, "Acyclic discrete phase type distributions: properties and a parameter estimation algorithm," Performance Evaluation, vol. 54, pp. 1-32, 2003. https://doi.org/10.1016/S0166-5316(03)00044-0
- C. Commault and S. Mocanu, "Phase-type distributions and representations: Some results and open problems for system theory," International Journal of Control, vol. 76, no. 6, pp. 566-580, 2003. https://doi.org/10.1080/0020717031000114986
- M. Fackrell, "Fitting with matrix-exponential distributions," Stochastic Models, vol. 21, no. 2, pp. 377-400, 2005. https://doi.org/10.1081/STM-200056227
- K. Kim and N. Thomas, "A fitting method with generalized erlang distributions," Simulation Modelling Practice and Theory, vol. 19, no. 7, pp. 1507-1517, 2011. https://doi.org/10.1016/j.simpat.2011.03.003
- C. OCinneide, "Characterization of phase-type distributions," Stochastic Models, vol. 6, no. 1, pp. 1-57, 1990. https://doi.org/10.1080/15326349908807134
- L. Benvenuti and L. Farina, "An example of how positivity may force realizations of 'large' dimension," Systems & Control Letters, vol. 36, no. 4, pp. 261-266, 1999. https://doi.org/10.1016/S0167-6911(98)00098-X
- C. Hadjicostis, "Bounds on the size of minimal nonnegative realizations for discrete-time lti systems," Systems & Control Letters, vol. 37, pp. 39-43, 1999.
- L. Benvenuti, L. Farina, B. Anderson, and F. De Bruyne, "Minimal positive realizations of transfer functions with positive real poles," Circuits and Systems I: Fundamental Theory and Applications, IEEE Transactions on, vol. 47, no. 9, pp. 1370-1377, 2000. https://doi.org/10.1109/81.883332
- B. Nagy and M. Matolcsi, "A lowerbound on the dimension of positive realizations," Circuits and Systems I: Fundamental Theory and Applications, IEEE Transactions on, vol. 50, no. 6, pp. 782-784, 2003. https://doi.org/10.1109/TCSI.2003.812609
- W. Czaja, P. Jamingc, and M. Matolcsi, "An efficient algorithm for positive realizations," Systems & Control Letters, vol. 57, no. 5, pp. 436-441, 2008. https://doi.org/10.1016/j.sysconle.2007.11.001
- B. Anderson, M. Deistler, L. Farina, and L. Benvenuti, "Nonnegative realization of a linear system with nonnegative impulse response," Circuits and Systems I: Fundamental Theory and Applications, IEEE Transactions on, vol. 43, no. 2, pp. 134-142, 1996. https://doi.org/10.1109/81.486435
- L. Farina, "On the existence of a positive realization," Systems & Control Letters, vol. 28, no. 4, pp. 219-226, 1996. https://doi.org/10.1016/0167-6911(96)00033-3
- J. Dattorro, Convex Optimization & Euclidean Distance Geometry. Meboo Publishing, 2010.
- J. van den Hof and J. van Schuppen, "Realization of positive linear systems using polyhedral cones," ser. Proc. 33rd IEEE Conf. on Decision and Control, 1994, pp. 3889-3893.
- D. G. Luenberger and Y. Ye, Linear and Nonlinear Programming. Springer, 2008.
- L. Farina and S. Rinaldi, Positive Linear Systems: Theory and Applications. Wiley, 2000.
- B. Nagy and M. Matolcsi, "Minimal positive realizations of transfer functions with nonnegative multiple poles," Automatic Control, IEEE Transactions on, vol. 50, no. 9, pp. 1447-1450, 2005. https://doi.org/10.1109/TAC.2005.854656
- L. Benvenuti, L. Farina, and B. Anderson, "Filtering through combination of positive filters," Circuits and Systems I: Fundamental Theory and Applications, IEEE Transactions on, vol. 46, no. 12, pp. 1431-1440, Dec. 1999. https://doi.org/10.1109/81.809545