References
- N. Al-Rawahi and G. Tryggvason, Numerical simulation of dendritic solidification with convection: twodimensional geometry, Journal of Computational Physics, 180 (2002), 471-496. https://doi.org/10.1006/jcph.2002.7092
- W.L. Briggs, A Multigrid Tutorial, SIAM, Philadelphia, 1987.
- W.K. Burton, N. Cabrera, and F.C. Frank, The growth of crystals and the equilibrium structure of their surfaces, Philosophical Transactions of the Royal Society A, 243 (1951), 299-358. https://doi.org/10.1098/rsta.1951.0006
- G. Caginalp, Stefan and Hele-Shaw type models as asymptotic limits of the phase-field equations, Physical Review A, 39 (1989), 5887-5896. https://doi.org/10.1103/PhysRevA.39.5887
- C.C. Chen and C.W. Lan, Efficient adaptive three-dimensional phase-field simulation of dendritic crystal growth from various supercoolings using rescaling, Journal of Crystal Growth, 311 (2009), 702-706. https://doi.org/10.1016/j.jcrysgro.2008.09.077
- S. Chen, B. Merriman, S. Osher, and P. Smereka, A simple level set method for solving Stefan problem, Journal of Computational Physics, 135 (1997), 8-29. https://doi.org/10.1006/jcph.1997.5721
- C.C. Chen, Y.L. Tsai, and C.W. Lan, Adaptive phase field simulation of dendritic crystal growth in a forced flow: 2D vs. 3D morphologies, International Journal of Heat and Mass Transfer, 52 (2009), 1158-1166. https://doi.org/10.1016/j.ijheatmasstransfer.2008.09.014
- J.-M. Debierre, A. Karma, F. Celestini, and R. Guerin, Phase-field approach for faceted solidification, Physical Review E, 68 (2003), 041604. https://doi.org/10.1103/PhysRevE.68.041604
- F.C. Frank, Metal Surfaces, ASM, Cleveland, OH, 1963.
- F. Gibou, R. Fedkiw, R. Caflisch, and S. Osher, A level set approach for the numerical simulation of dendritic growth, Journal of Scientific Computing, 19 (2002) 183-199.
- J.-H. Jeong, N. Goldenfeld, and J.A. Dantzig, Phase field model for three-dimensional dendritic growth with fluid flow, Physical Review E, 64 (2001), 041602. https://doi.org/10.1103/PhysRevE.64.041602
- D. Juric and G. Tryggvason, A front-tracking method for dendritic solidification, Journal of Computational Physics, 123 (1996), 127-148. https://doi.org/10.1006/jcph.1996.0011
- A. Jacot and M. Rappaz, A pseudo-front tracking technique for the modelling of solidification microstructures in multi-component alloys, Acta Materialia, 50 (2002), 1909-1926. https://doi.org/10.1016/S1359-6454(01)00442-6
- A. Karma, Y.H. Lee, and M. Plapp, Three-dimensional dendrite-tip morphology at low undercooling, Physical Review E, 61 (2000) 3996-4006. https://doi.org/10.1103/PhysRevE.61.3996
- A. Karma and W.-J. Rappel, Phase-field method for computationally efficient modeling of solidification with arbitrary interface kinetics, Physical Review E, 53 (1996), 3017-3020. https://doi.org/10.1103/PhysRevE.53.R3017
- A. Karma and W.-J. Rappel, Quantitative phase-field modeling of dendritic growth in two and three dimensions, Physical Review E, 57 (1998), 4323-4349. https://doi.org/10.1103/PhysRevE.57.4323
- Y.-T. Kim, N. Goldenfeld, and J. Dantzig, Computation of dendritic microstructures using a level set method, Physical Review E, 62 (2000) 2471-2474. https://doi.org/10.1103/PhysRevE.62.2471
- R. Kobayashi, Modeling and numerical simulations of dendritic crystal growth, Physica D, 63 (1993), 410-423. https://doi.org/10.1016/0167-2789(93)90120-P
- A. Kumar, Isotropic finite-differences, Journal of Computational Physics, 201 (2004), 109-118. https://doi.org/10.1016/j.jcp.2004.05.005
- J.S. Langer, Directions in Condensed Matter, World Scientific, Singapore, 1986, 164-186.
- X. Li, J. Glimm, X. Jiao, C. Peyser, and Y. Zhao, Study of crystal growth and solute precipitation through front tracking method, Acta Mathematica Scientia, 30 (2010), 377-390. https://doi.org/10.1016/S0252-9602(10)60055-0
- Y. Li, H.G. Lee, and J.S. Kim, A fast, robust, and accurate operator splitting method for phase-field simulations of crystal growth, Journal of Crystal Growth, 321 (2011), 176-182. https://doi.org/10.1016/j.jcrysgro.2011.02.042
- Y. Li, H.G. Lee, D. Jeong, and J.S. Kim, An unconditionally stable hybrid numerical method for solving the Allen-Cahn equation, Computers and Mathematics with Applications, 60 (2010), 1591-1606. https://doi.org/10.1016/j.camwa.2010.06.041
- K.G. Libberecht, The physics of snow crystal, Reports on Progress in Physics, 68 (2005), 855-895. https://doi.org/10.1088/0034-4885/68/4/R03
- D. Li, R. Li, and P. Zhang, A cellular automaton technique for modelling of a binary dendritic growth with convection, Applied Mathematical Modelling, 31 (2007), 971-982. https://doi.org/10.1016/j.apm.2006.04.004
- S. Li, J.S. Lowengrub, P.H. Leo, and V. Cristini, Nonlinear stability analysis of self-similar crystal growth: control of the Mullins-Sekerka instability, Journal of Crystal Growth, 277 (2005), 578-592. https://doi.org/10.1016/j.jcrysgro.2004.12.042
- D.I. Meiron, Boundary integral formulation of the two-dimensional symmetric model of dendritic growth, Physica D, 23 (1986), 329-339. https://doi.org/10.1016/0167-2789(86)90138-7
- N. Provatas, N. Goldenfeld, and J. Dantzig, Efficient computation of dendritic microstructures using adaptive mesh refinement, Physical Review Letters, 80 (1998), 3308-3311. https://doi.org/10.1103/PhysRevLett.80.3308
- M. Plapp and A. Karma, Multiscale finite-difference-diffusion-Monte-Carlo method for simulating dendritic solidification, Journal of Computational Physics, 165 (2000), 592-619. https://doi.org/10.1006/jcph.2000.6634
- N. Provatas, N. Goldenfeld, and J. Dantzig, Adaptive mesh refinement computation of solidification microstructures using dynamic data structures, Journal of Computational Physics, 148 (1999), 265-290. https://doi.org/10.1006/jcph.1998.6122
- J.C. Ramirez, C. Beckermann, A. Karma, and H.-J. Diepers, Phase-field modeling of binary alloy solidification with coupled heat and solute diffusion, Physical Review E, 69 (2004), 051607. https://doi.org/10.1103/PhysRevE.69.051607
- J. Rosam, P.K. Jimack, A. Mullis, A fully implicit, fully adaptive time and space discretisation method for phase-field simulation of binary alloy solidification, Journal of Computational Physics, 225 (2007), 1271-1287. https://doi.org/10.1016/j.jcp.2007.01.027
- T.P. Schulze, Simulation of dendritic growth into an undercooled melt using kinetic Monte Carlo techniques, Physical Review E, 78 (2008), 020601. https://doi.org/10.1103/PhysRevE.78.020601
- J.A. Sethian and J. Straint, Crystal growth and dendritic solidification, Journal of Computational Physics, 98 (1992), 231-253. https://doi.org/10.1016/0021-9991(92)90140-T
- C.J. Shih, M.H. Lee, and C.W. Lan, A simple approach toward quantitative phase field simulation for dilutealloy solidification, Journal of Crystal Growth, 282 (2005), 515-524. https://doi.org/10.1016/j.jcrysgro.2005.05.052
- J. Strain, A boundary integral approach to unstable solidification, Journal of Computational Physics, 85 (1989), 342-389. https://doi.org/10.1016/0021-9991(89)90155-1
- X. Tong, C. Beckermann, A. Karma, and Q. Li, Phase-field simulations of dendritic crystal growth in a forced flow, Physical Review E, 63 (2001), 061601. https://doi.org/10.1103/PhysRevE.63.061601
- U. Trottenberg, C. Oosterlee, and A. Sculler, Multigrid, Academic Press, USA, 2001.
- J.A. Warren and W.J. Boettinger, Prediction of dendritic growth and microsegregation patterns in a binary alloy using the phase-field method, Acta Metallurgica et Materialia, 43 (1995), 689-703. https://doi.org/10.1016/0956-7151(94)00285-P
- S.-L. Wang and R.F. Sekerka, Algorithms for phase field computation of the dendritic operating state at large supercoolings, Journal of Computational Physics, 127 (1996), 110-117. https://doi.org/10.1006/jcph.1996.0161
- K.Wang, A. Chang, L.V. Kale, and J.A. Dantzig, Parallelization of a level set method for simulating dendritic growth, Journal of Parallel and Distributed Computing, 66, (2006), 1379-1386. https://doi.org/10.1016/j.jpdc.2006.02.005
- G. Wulff, Zur frage der geschwindigkeit des wachsturms under auflosung der kristallflachen, Z Kristallogr, 34 (1901), 449-530.
- Y. Xu, J.M. McDonough and K.A. Tagavi, A numerical procedure for solving 2D phase-field model problems, Journal of Computational Physics, 218 (2006), 770-793. https://doi.org/10.1016/j.jcp.2006.03.007
- H. Yin and S.D. Felicelli, A cellular automaton model for dendrite growth in magnesium alloy AZ91, Modelling Simul, Materials Science and Engineering, 17 (2009), 075011. https://doi.org/10.1088/0965-0393/17/7/075011
- M.F. Zhu and C.P. Hong, A modified cellular automaton model for the simulation of dendritic growth in solidification of alloys, ISIJ International, 41 (2001), 436-445. https://doi.org/10.2355/isijinternational.41.436
- M.F. Zhu, S.Y. Lee, and C.P. Hong, Modified cellular automaton model for the prediction of dendritic growth with melt convection, Physical Review E, 69 (2004), 061610. https://doi.org/10.1103/PhysRevE.69.061610
- M.F. Zhu, S.Y. Pan, D.K. Sun, and H.L. Zhao, Numerical simulation of microstructure evolution during alloy solidification by using cellular automaton method, ISIJ International, 50 (2010), 1851-1858. https://doi.org/10.2355/isijinternational.50.1851
Cited by
- A NUMERICAL METHOD FOR THE MODIFIED VECTOR-VALUED ALLEN-CAHN PHASE-FIELD MODEL AND ITS APPLICATION TO MULTIPHASE IMAGE SEGMENTATION vol.18, pp.1, 2014, https://doi.org/10.12941/jksiam.2014.18.027
- Fourier-Spectral Method for the Phase-Field Equations vol.8, pp.8, 2020, https://doi.org/10.3390/math8081385