DOI QR코드

DOI QR Code

A ROBUST AND ACCURATE PHASE-FIELD SIMULATION OF SNOW CRYSTAL GROWTH

  • Received : 2011.08.19
  • Accepted : 2012.03.05
  • Published : 2012.03.25

Abstract

In this paper we introduce 6-fold symmetry crystal growth using new phase-field models based on the modified Allen-Cahn equation. The proposed method is a hybrid method which uses both analytic and numerical solutions. We then show this method can be extended to $k$-fold case. The Wulff construction procedure is provided to understand and predict the shape of crystals. We also present a detailed mathematical proof of the validity of the Wulff construction. For computational results, we verify the accuracy and efficiency of the method for snow crystal growth.

Keywords

References

  1. N. Al-Rawahi and G. Tryggvason, Numerical simulation of dendritic solidification with convection: twodimensional geometry, Journal of Computational Physics, 180 (2002), 471-496. https://doi.org/10.1006/jcph.2002.7092
  2. W.L. Briggs, A Multigrid Tutorial, SIAM, Philadelphia, 1987.
  3. W.K. Burton, N. Cabrera, and F.C. Frank, The growth of crystals and the equilibrium structure of their surfaces, Philosophical Transactions of the Royal Society A, 243 (1951), 299-358. https://doi.org/10.1098/rsta.1951.0006
  4. G. Caginalp, Stefan and Hele-Shaw type models as asymptotic limits of the phase-field equations, Physical Review A, 39 (1989), 5887-5896. https://doi.org/10.1103/PhysRevA.39.5887
  5. C.C. Chen and C.W. Lan, Efficient adaptive three-dimensional phase-field simulation of dendritic crystal growth from various supercoolings using rescaling, Journal of Crystal Growth, 311 (2009), 702-706. https://doi.org/10.1016/j.jcrysgro.2008.09.077
  6. S. Chen, B. Merriman, S. Osher, and P. Smereka, A simple level set method for solving Stefan problem, Journal of Computational Physics, 135 (1997), 8-29. https://doi.org/10.1006/jcph.1997.5721
  7. C.C. Chen, Y.L. Tsai, and C.W. Lan, Adaptive phase field simulation of dendritic crystal growth in a forced flow: 2D vs. 3D morphologies, International Journal of Heat and Mass Transfer, 52 (2009), 1158-1166. https://doi.org/10.1016/j.ijheatmasstransfer.2008.09.014
  8. J.-M. Debierre, A. Karma, F. Celestini, and R. Guerin, Phase-field approach for faceted solidification, Physical Review E, 68 (2003), 041604. https://doi.org/10.1103/PhysRevE.68.041604
  9. F.C. Frank, Metal Surfaces, ASM, Cleveland, OH, 1963.
  10. F. Gibou, R. Fedkiw, R. Caflisch, and S. Osher, A level set approach for the numerical simulation of dendritic growth, Journal of Scientific Computing, 19 (2002) 183-199.
  11. J.-H. Jeong, N. Goldenfeld, and J.A. Dantzig, Phase field model for three-dimensional dendritic growth with fluid flow, Physical Review E, 64 (2001), 041602. https://doi.org/10.1103/PhysRevE.64.041602
  12. D. Juric and G. Tryggvason, A front-tracking method for dendritic solidification, Journal of Computational Physics, 123 (1996), 127-148. https://doi.org/10.1006/jcph.1996.0011
  13. A. Jacot and M. Rappaz, A pseudo-front tracking technique for the modelling of solidification microstructures in multi-component alloys, Acta Materialia, 50 (2002), 1909-1926. https://doi.org/10.1016/S1359-6454(01)00442-6
  14. A. Karma, Y.H. Lee, and M. Plapp, Three-dimensional dendrite-tip morphology at low undercooling, Physical Review E, 61 (2000) 3996-4006. https://doi.org/10.1103/PhysRevE.61.3996
  15. A. Karma and W.-J. Rappel, Phase-field method for computationally efficient modeling of solidification with arbitrary interface kinetics, Physical Review E, 53 (1996), 3017-3020. https://doi.org/10.1103/PhysRevE.53.R3017
  16. A. Karma and W.-J. Rappel, Quantitative phase-field modeling of dendritic growth in two and three dimensions, Physical Review E, 57 (1998), 4323-4349. https://doi.org/10.1103/PhysRevE.57.4323
  17. Y.-T. Kim, N. Goldenfeld, and J. Dantzig, Computation of dendritic microstructures using a level set method, Physical Review E, 62 (2000) 2471-2474. https://doi.org/10.1103/PhysRevE.62.2471
  18. R. Kobayashi, Modeling and numerical simulations of dendritic crystal growth, Physica D, 63 (1993), 410-423. https://doi.org/10.1016/0167-2789(93)90120-P
  19. A. Kumar, Isotropic finite-differences, Journal of Computational Physics, 201 (2004), 109-118. https://doi.org/10.1016/j.jcp.2004.05.005
  20. J.S. Langer, Directions in Condensed Matter, World Scientific, Singapore, 1986, 164-186.
  21. X. Li, J. Glimm, X. Jiao, C. Peyser, and Y. Zhao, Study of crystal growth and solute precipitation through front tracking method, Acta Mathematica Scientia, 30 (2010), 377-390. https://doi.org/10.1016/S0252-9602(10)60055-0
  22. Y. Li, H.G. Lee, and J.S. Kim, A fast, robust, and accurate operator splitting method for phase-field simulations of crystal growth, Journal of Crystal Growth, 321 (2011), 176-182. https://doi.org/10.1016/j.jcrysgro.2011.02.042
  23. Y. Li, H.G. Lee, D. Jeong, and J.S. Kim, An unconditionally stable hybrid numerical method for solving the Allen-Cahn equation, Computers and Mathematics with Applications, 60 (2010), 1591-1606. https://doi.org/10.1016/j.camwa.2010.06.041
  24. K.G. Libberecht, The physics of snow crystal, Reports on Progress in Physics, 68 (2005), 855-895. https://doi.org/10.1088/0034-4885/68/4/R03
  25. D. Li, R. Li, and P. Zhang, A cellular automaton technique for modelling of a binary dendritic growth with convection, Applied Mathematical Modelling, 31 (2007), 971-982. https://doi.org/10.1016/j.apm.2006.04.004
  26. S. Li, J.S. Lowengrub, P.H. Leo, and V. Cristini, Nonlinear stability analysis of self-similar crystal growth: control of the Mullins-Sekerka instability, Journal of Crystal Growth, 277 (2005), 578-592. https://doi.org/10.1016/j.jcrysgro.2004.12.042
  27. D.I. Meiron, Boundary integral formulation of the two-dimensional symmetric model of dendritic growth, Physica D, 23 (1986), 329-339. https://doi.org/10.1016/0167-2789(86)90138-7
  28. N. Provatas, N. Goldenfeld, and J. Dantzig, Efficient computation of dendritic microstructures using adaptive mesh refinement, Physical Review Letters, 80 (1998), 3308-3311. https://doi.org/10.1103/PhysRevLett.80.3308
  29. M. Plapp and A. Karma, Multiscale finite-difference-diffusion-Monte-Carlo method for simulating dendritic solidification, Journal of Computational Physics, 165 (2000), 592-619. https://doi.org/10.1006/jcph.2000.6634
  30. N. Provatas, N. Goldenfeld, and J. Dantzig, Adaptive mesh refinement computation of solidification microstructures using dynamic data structures, Journal of Computational Physics, 148 (1999), 265-290. https://doi.org/10.1006/jcph.1998.6122
  31. J.C. Ramirez, C. Beckermann, A. Karma, and H.-J. Diepers, Phase-field modeling of binary alloy solidification with coupled heat and solute diffusion, Physical Review E, 69 (2004), 051607. https://doi.org/10.1103/PhysRevE.69.051607
  32. J. Rosam, P.K. Jimack, A. Mullis, A fully implicit, fully adaptive time and space discretisation method for phase-field simulation of binary alloy solidification, Journal of Computational Physics, 225 (2007), 1271-1287. https://doi.org/10.1016/j.jcp.2007.01.027
  33. T.P. Schulze, Simulation of dendritic growth into an undercooled melt using kinetic Monte Carlo techniques, Physical Review E, 78 (2008), 020601. https://doi.org/10.1103/PhysRevE.78.020601
  34. J.A. Sethian and J. Straint, Crystal growth and dendritic solidification, Journal of Computational Physics, 98 (1992), 231-253. https://doi.org/10.1016/0021-9991(92)90140-T
  35. C.J. Shih, M.H. Lee, and C.W. Lan, A simple approach toward quantitative phase field simulation for dilutealloy solidification, Journal of Crystal Growth, 282 (2005), 515-524. https://doi.org/10.1016/j.jcrysgro.2005.05.052
  36. J. Strain, A boundary integral approach to unstable solidification, Journal of Computational Physics, 85 (1989), 342-389. https://doi.org/10.1016/0021-9991(89)90155-1
  37. X. Tong, C. Beckermann, A. Karma, and Q. Li, Phase-field simulations of dendritic crystal growth in a forced flow, Physical Review E, 63 (2001), 061601. https://doi.org/10.1103/PhysRevE.63.061601
  38. U. Trottenberg, C. Oosterlee, and A. Sculler, Multigrid, Academic Press, USA, 2001.
  39. J.A. Warren and W.J. Boettinger, Prediction of dendritic growth and microsegregation patterns in a binary alloy using the phase-field method, Acta Metallurgica et Materialia, 43 (1995), 689-703. https://doi.org/10.1016/0956-7151(94)00285-P
  40. S.-L. Wang and R.F. Sekerka, Algorithms for phase field computation of the dendritic operating state at large supercoolings, Journal of Computational Physics, 127 (1996), 110-117. https://doi.org/10.1006/jcph.1996.0161
  41. K.Wang, A. Chang, L.V. Kale, and J.A. Dantzig, Parallelization of a level set method for simulating dendritic growth, Journal of Parallel and Distributed Computing, 66, (2006), 1379-1386. https://doi.org/10.1016/j.jpdc.2006.02.005
  42. G. Wulff, Zur frage der geschwindigkeit des wachsturms under auflosung der kristallflachen, Z Kristallogr, 34 (1901), 449-530.
  43. Y. Xu, J.M. McDonough and K.A. Tagavi, A numerical procedure for solving 2D phase-field model problems, Journal of Computational Physics, 218 (2006), 770-793. https://doi.org/10.1016/j.jcp.2006.03.007
  44. H. Yin and S.D. Felicelli, A cellular automaton model for dendrite growth in magnesium alloy AZ91, Modelling Simul, Materials Science and Engineering, 17 (2009), 075011. https://doi.org/10.1088/0965-0393/17/7/075011
  45. M.F. Zhu and C.P. Hong, A modified cellular automaton model for the simulation of dendritic growth in solidification of alloys, ISIJ International, 41 (2001), 436-445. https://doi.org/10.2355/isijinternational.41.436
  46. M.F. Zhu, S.Y. Lee, and C.P. Hong, Modified cellular automaton model for the prediction of dendritic growth with melt convection, Physical Review E, 69 (2004), 061610. https://doi.org/10.1103/PhysRevE.69.061610
  47. M.F. Zhu, S.Y. Pan, D.K. Sun, and H.L. Zhao, Numerical simulation of microstructure evolution during alloy solidification by using cellular automaton method, ISIJ International, 50 (2010), 1851-1858. https://doi.org/10.2355/isijinternational.50.1851

Cited by

  1. A NUMERICAL METHOD FOR THE MODIFIED VECTOR-VALUED ALLEN-CAHN PHASE-FIELD MODEL AND ITS APPLICATION TO MULTIPHASE IMAGE SEGMENTATION vol.18, pp.1, 2014, https://doi.org/10.12941/jksiam.2014.18.027
  2. Fourier-Spectral Method for the Phase-Field Equations vol.8, pp.8, 2020, https://doi.org/10.3390/math8081385