DOI QR코드

DOI QR Code

Expressional Profiling of Molecules Associated with Epigenetic Methylation-Related Fertility in the Rat Testis during Postnatal Period

  • Seo, Hee-Jung (Department of Biochemistry and Molecular Biology, College of Medicine, Eulji University) ;
  • Lee, Seong-Kyu (Department of Biochemistry and Molecular Biology, College of Medicine, Eulji University) ;
  • Baik, Haing-Woon (Department of Biochemistry and Molecular Biology, College of Medicine, Eulji University) ;
  • Lee, Ki-Ho (Department of Biochemistry and Molecular Biology, College of Medicine, Eulji University)
  • Received : 2012.06.02
  • Accepted : 2012.06.20
  • Published : 2012.06.30

Abstract

The male reproduction is precisely controlled by a number of intrinsic and extrinsic factors. These factors usually involve in expressional regulation of various molecules influencing on sperm production in the testis. A number of ways are employed to control the transcription of specific genes, including epigenetic modifications of DNA and histone molecules. DNA methylation of CpG dinucleotides is a commonly used regulatory mechanism for testicular genes associated with the fertility. Previous studies have demonstrated the infertility induced by improper DNA methylation of these genes. In the present research, we attempted to determine transcriptional expression of some of these genes in the rat testis at different postnatal ages using real-time PCR analysis. These genes include neurotrophin 3 (Ntf3), insulin-like growth factor II (Igf2), JmjC-domain-containing histone demethylase 2A 1 (Jhm2da), paired box 8 transcription factor (Pax8), small nuclear ribonucleoprotein polypeptide N (Snrpn), and 5,10-methylenetetrahydrofolate reductase (Mthfr). The expression levels of Ntf3, Igf2, and Snrpn genes were the highest at the neonatal age, followed by transient decreases at the prepubertal age. Expression of Jhm2da and Mthfr genes were continuously increased from the neonate to 1 year of age. The levels of Pax8 mRNA at the early ages were higher than those at the later ages of postnatal development. These findings suggest that expression of some fertility-associated testicular genes in the rat during postnatal period could be differentially regulated by the control of the degree of DNA methylation.

Keywords

References

  1. Berensztein, E. B., Baquedano, M. S., Pepe, C. M., Costanzo, M., Saraco, N. I., Ponzio, R., Rivarola, M. A. and Belgorosky, A. 2008. Role of IGFs and insulin in the human testis during postnatal activation: differentiation of steroidogenic cells. Pediatr. Res. 63:662-668. https://doi.org/10.1203/PDR.0b013e31816c8ffc
  2. Berger, S. L. 2002. Histone modifications in transcriptional regulation. Curr. Opin. Genet. Dev. 12:142-148. https://doi.org/10.1016/S0959-437X(02)00279-4
  3. Biermann, K. and Steger, K. 2007. Epigenetics in male germ cells. J. Androl. 28:466-480. https://doi.org/10.2164/jandrol.106.002048
  4. Chan, D., Cushnie, D. W., Neaga, O. R., Lawrance, A. K., Rozen, R. and Trasler, J. M. 2010. Strain-specific defects in testicular development and sperm epigenetic patterns in 5, 10-methyneteahydrofolate reductase-deficient mice. Endocrinology. 151: 363-3373.
  5. Colon, E., Zaman, F., Axelson, M., Larsson, O., Carlsson-Skwirut, C., Svechnikov, K. V. and Soder, O. 2007. Insulin-like growth factor-I is an important antiapoptotic factor for rat leydig cells during postnatal development. Endocrinology. 148:128-139. https://doi.org/10.1210/en.2006-0835
  6. Dada, R., Kumar, M., Jesudasan, R., Fernández, J. L., Gosálvez, J. and Agarwal, A. 2012. Epigenetics and its role in male infertility. J. Assist. Reprod. Genet. 29:213-223. https://doi.org/10.1007/s10815-012-9715-0
  7. Dasoula, A., Georgiou, I., Kontogianni, E., Sofikitis, N. and Syrrou, M. 2007. Methylation status of the SNRPN and HUMARA genes in testicular biopsy samples. Fertil. Steril. 87:805-809. https://doi.org/10.1016/j.fertnstert.2006.09.009
  8. del Mazo, J., Prantera, G., Torres, M. and Ferraro, M. 1994. DNA methylation changes during mouse spermatogenesis. Chromome Res. 2:147-152. https://doi.org/10.1007/BF01553493
  9. Dong, L., Jelinsky, S. A., Finger, J. N., Johnston, D. S., Kopf, G. S., Sottas, C. M., Hardy, M. P. and Ge, R. S. 2007. Gene expression during development of fetal and adult Leydig cells. Ann. N. Y. Acad. Sci. 1120:16-35. https://doi.org/10.1196/annals.1411.016
  10. Hammoud, S. S., Purwar, J., Pflueger, C., Cairns, B. R. and Carrell, D. T. 2010. Alternations in sperm DNA methylation patterns at imprinted loci in two classes of infertility. Fertil. Steril. 94:1728-1733. https://doi.org/10.1016/j.fertnstert.2009.09.010
  11. Houshdaran, S., Cortessis, V., Siegmund, K., Yang, A., Laird, P. W. and Sokol, R. Z. 2007. Widespread epigenetic abnormalities suggest a broad DNA methylation erasure defect in abnormal human sperm. PLoS One. 12:e1289.
  12. Kelly, T. L., Neaga, O. R., Schwahn, B. C., Rozen, R. and Trasler, J. M. 2005. Infertility in 5,10-methylenetetrahydrofolate reductase (MTHFR)-deficient male mice is partially alleviated by lifetime dietary betaine supplementation. Biol. Reprod. 72:667-677. https://doi.org/10.1095/biolreprod.104.035238
  13. Liu, Z., Zhou, S., Liao, L., Chen, X., Meistrich, M. and Xu, J. 2010. Jmjd1a demethylase-regulated histone modification is essential for cAMP-response element modulator-regulated gene expression and spermatogensis. J. Biol. Chem. 285:2758-2770. https://doi.org/10.1074/jbc.M109.066845
  14. Maclean, J. A. 2nd and Wilkinson, M. F. 2005. Gene regulation in spermatogenesis. Curr. Top. Dev. Biol. 71:131-197. https://doi.org/10.1016/S0070-2153(05)71005-X
  15. Muller, D., Davidoff, M. S., Bargheer, O., Paust, H. J., Pusch, W., Koeva, Y., Jezek, D., Holstein, A. F. and Middendorff, R.2006. The expression of neurotrophins and their receptors in the prenatal and adult human testis: evidence for functions in Leydig cells. Histochem. Cell Biol. 126:199-211. https://doi.org/10.1007/s00418-006-0155-8
  16. Oakes, C. C., La Salle, S., Smiraglia, D. J., Robaire, B. AND Trasler, J. M. 2007. A unique configuration of genome-wide DNA methylation patterns in the testis. Proc. Natl. Acad. Sci. U.S.A. 104:228-233. https://doi.org/10.1073/pnas.0607521104
  17. Okada, Y., Scott, G., Ray, M. K., Mishina, Y. and Zhang, Y. 2007. Histone demethylase JHDM2A is critical for Tnp1 and Prm1 transcription and spermatogenesis. Nature. 450:119-123. https://doi.org/10.1038/nature06236
  18. Poplinski, A., Tuttelmann, F., Kanber, D., Horsthemke, B. and Gromoll, J. 2009. Idiopathic male infertility is strongly associated with aberrant methylation of MEST and IGF2/H19 ICR1. Int. J. Androl. 33:642-649.
  19. Rajender, S., Avery, K. and Agarwal, A. 2011. Epigenetics, spermatogenesis and male infertility. Mutat. Res. 727:62-71. https://doi.org/10.1016/j.mrrev.2011.04.002
  20. Russo, M. A., Giustizieri, M. L., Favale, A., Fantini, M. C., Campagnolo, L., Konda, D., Germano, F., Farini, D., Manna, C. and Siracusa, G. 1999. Spatiotemporal patterns of expression of neurotrophins and neurotrophin receptors in mice suggest functional roles in testicular and epididymal morphogenesis. Biol. Reprod. 61:1123-1132. https://doi.org/10.1095/biolreprod61.4.1123
  21. Seo, H. J., Lee, S. K., Baik, H. W., Cheon, Y.-P., Chun, T., Choi, I. and Lee, K.-H. 2011. Expressional profiling of telomerase and telomere-associated molecules in the rat testis and seminal vesicle during postnatal developmental period. J. Anim. Sci. Technol. 53:195-202. https://doi.org/10.5187/JAST.2011.53.3.195
  22. Tong, G. X., Memeo, L., Colarossi, C., Hamele-Bena, D., Magi-Galluzzi, C., Zhou, M., Lagana, S. M., Harik, L., Oliver-Krasinski, J. M., Mansukhani, M., Falcone, L., Hibshoosh, H. and O'Toole, K. 2011. PAX8 and PAX2 immunostaining facilitates the diagnosis of primary epithelial neoplasms of the male genital tract. Am. J. Surg. Pathol. 35:1473-1483. https://doi.org/10.1097/PAS.0b013e318227e2ee