Abstract
Given art gallery P with n vertices, the maximum (sufficient) number of mobile guards is${\lfloor}n/4{\rfloor}$ for simple polygon and${\lfloor}(3n+4)/16{\rfloor}$ for simple orthogonal polygon. However, there is no polynomial time algorithm for minimum number of mobile guards. This paper suggests polynomial time algorithm for the minimum number of mobile guards. Firstly, we obtain the visibility graph which is connected all edges if two vertices can be visible each other. Secondly, we select vertex u with ${\Delta}(G)$ and v with ${\Delta}(G)$ in $N_G(u)$ and delete visible edges from u,v and incident edges. Thirdly, we select $w_i$ in partial graphs and select edges that is the position of mobile guards. This algorithm applies various art galley problems with simple polygons and orthogonal polygons art gallery. As a results, the running time of proposed algorithm is linear time complexity and can be obtain the minimum number of mobile guards.
n개의 정점으로 구성된 화랑 P에 대한 최대 이동 경비원 수는 단순 다각형은 ${\lfloor}n/4{\rfloor}$, 직각 다각형은 ${\lfloor}(3n+4)/16{\rfloor}$이며, 최소 경비원수를 구하는 다항시간 알고리즘은 알려져 있지 않아 NP-난제 (NP-Hard)이다 . 본 논문은 화랑 문제의 최소 이동 경비원 수를 구하는 다항시간 알고리즘을 제안하였다. 첫 번째로, 모든 정점에서 볼 수 있는 다른 정점으로 간선을 그린 가시성 그래프를 얻는다. 두 번째로 ${\Delta}(G)$인 정점 u와 $N_G(u)$에 있는 ${\Delta}(G)$ 정점 v를 선택하고 가시성 간선과 부속 간선을 삭제한다. 세 번째로, 남아 있는 부분 그래프 각각에 대해 정점 $w_i$를 선택하여 이동 경비원이 위치할 간선을 선택하였다. 제안된 알고리즘을 다양한 단순 다각형과 직각 다각형 화랑 문제에 적용한 결과 선형시간으로 최소 이동 경비원 수를 얻었다.