DOI QR코드

DOI QR Code

Effect of Sulfate Supply Level on Sulfate Assimilation in Different Oilseed Rape Cultivars

유채 품종별 황 공급수준이 황산염 동화에 미치는 영향

  • Received : 2012.02.15
  • Accepted : 2012.06.12
  • Published : 2012.06.30

Abstract

To determine sulfate uptake and assimilation of various rape cultivars (Brassica napus L.) under different S levels, the activity of ATP sulfurylase, ${SO_4}^{2-}$ uptake and glutathione (GSH) concentrations were measured in different age of leaves. In this study, ten rape cultivars (Mokpo, Tamra, Youngsan, Naehan, Saturnin, Akela, Mosa, Capitol, Pollen, and Colosse) showed various sulfate uptake and assimilation capacity in response to inefficient sulfate supply. Under inadequate sulfate conditions, a greater ATP sulfurylase activity in young leaves was observed in all cultivars compared to that of old leaves. In addition, GSH concentration was considerably increased in young leaves when S supply was declined from 2.0 to 0.2 mM. These results suggested that rape cultivars differ in their capacity to utilize sulfate under limited S conditions.

유채 품종에서 황 공급수준이 황산염 흡수 및 동화에 미치는 영향을 구명하고자 어린 잎과 성엽 조직에서 ATP sulfurylase (ATPs), ${SO_4}^{2-}$ 흡수, 글루타치온 함량을 분석하였다. 본 실험에서 10가지 유채 품종들 (Mosa, Capitol, Saturnin, Akela, Pollen, Mokpo, Youngsan, Tamra Colosse 그리고 Naehan)은 황 공급수준에 따라 몇 가지 황산염 흡수와 동화 능력이 다르게 나타났다. 황 결핍 조건에서 모든 품종의 ATP sulfurylase (ATPs) 활력은 늙은 잎에 비해 어린 잎에서 높게 나타났으며, 글루타치온 함량은 황 공급수준이 감소함에 따라 어린 잎에서 많이 증가하였다. 이러한 결과들은 유채 품종별 황 결핍조건에서 황을 이용하는 능력이 다르다는 것을 잘 보여주었다.

Keywords

References

  1. Abdallah, M., L. Dubousset, F. Meuriot, P. Etienne, J.C. Avice and A. Ourry. 2010. Effect of mineral sulphur availability on nitrogen and sulphur uptake and remobilization during the vegetative growth of Brassica napus L. J. Exp. Bot. 61:2635-2646. https://doi.org/10.1093/jxb/erq096
  2. Adams, C.A. and R.W. Rinne. 1969. Influence of age and sulphur metabolism on ATP sulfurylase activity in the soybean and a survey of selected species. Plant Physiol. 44:1241-1246. https://doi.org/10.1104/pp.44.9.1241
  3. Ahmad, A.I. Khan, N. A. Anjum, Y.P. Abrol and M. Iqbal. 2005. Role of sulphate transporter systems in sulphur efficiency of mustard genotypes. Plant Sci. 169:842-846. https://doi.org/10.1016/j.plantsci.2005.05.036
  4. Aulakh, M.S. 2003. Crop responses to sulphur nutrition. In: Y.P. Abrol, A. Ahmad (Eds.), Sulphur in Plants, Kluwer Academic Publishers, Dordrecht, pp. 341-354.
  5. Bell, C.I., D.T. Clarkson and W.J. Cram. 1995. Sulfate supply and its regulation of transport in roots of a tropical legume Macroptilium atropurpureum cv. Siratro. J. Exp. Bot. 46:65-71. https://doi.org/10.1093/jxb/46.1.65
  6. Blake-Kalff, M.M.A., K.R. Harrison, M.J. Hawkesford, F.J. Zhao and S.P. McGrath. 1998. Distribution of sulfur within oilseed rape leaves in response to sulfur deficiency during vegetative growth. Plant Physiol. 118:1337-1344. https://doi.org/10.1104/pp.118.4.1337
  7. Clarkson, D.T., F.W. Smith and P.J. van den Berg. 1983. Regulation of sulfate transport in a tropical legume, Macroptilium atropurpureum, cv. Siratro. J. Exp. Bot. 34:1463-1483. https://doi.org/10.1093/jxb/34.11.1463
  8. Eriksen, J., K. Thorup-Kristensen and M. Askegard. 2004. Plant availability of catch crop sulfur following spring incorporation. J. Plant Nutr. Soil Sci. 167:609-615. https://doi.org/10.1002/jpln.200420415
  9. Hartmann, T., P. Hönicke, M. Wirtz, R. Hell, H. Rennenberg and S. Kopriva. 2004. Sulfate assimilation in poplars (Populus tremula ${\times}$ P. alba) overexpressing $\gamma$-glutamylcysteine synthetase in the cytosol. J. Exp. Bot. 55:837-845. https://doi.org/10.1093/jxb/erh094
  10. Herschbach, C. and H. Rennenberg. 1991. Influence of glutathione (GSH) on sulfate influx, xylem loading and exudation in excised tobacco roots. J. Exp. Bot. 42:1021-1029. https://doi.org/10.1093/jxb/42.8.1021
  11. Herschbach C., E. van Der Zalm, A. Schneider, L. Jouanin, L.J. De Kok, and H. Rennenberg. 2000. Regulation of sulfur nutrition in wild-type and transgenic poplar over-expressing $\gamma$- glutamylcysteine synthetase in the cytosol as affected by atmospheric $H_2S$. Plant Physiol. 124: 461-473. https://doi.org/10.1104/pp.124.1.461
  12. Holmes, M.R.J. 1980. Nutrition of the Oilseed Rape Crop. Applied Science Publishers, London.
  13. Kim, T.H., A. Ourry, J. Boucaud and G. Lemaire. 1991. Changes in source-sink relationship for nitrogen during regrowth of lucerne (Medicago sativa L.) following removal of shoots. Aust. J. Plant Physiol. 18:593-602. https://doi.org/10.1071/PP9910593
  14. Lappartient, A.G. and B. Touraine. 1996. Demanddriven control of root ATP Sulfurylase activity and $SO_4^{2-}$ uptake in Intact Canola. Plant Physiol. 111:147-157. https://doi.org/10.1104/pp.111.1.147
  15. Lappartient, A.G., J.J. Vidmar, T. Leustek, A.D.M. Glass and B. Touraine. 1999. Inter-organ signaling in plants: regulation of ATP sulfurylase and sulfate transporter genes expression in roots mediated by phloem-translocated compound. Plant J. 18:89-95. https://doi.org/10.1046/j.1365-313X.1999.00416.x
  16. Legge, A.H. and S.V. Krupa. 2002. Effects of sulphur dioxide, in: Bell J.N.B., M. Treshow (Eds.), Air pollution and plant life, John Wiley & Sons, Chichester, pp. 135-162.
  17. Leustek, T. 2002. Sulfate metabolism. In CR Somerville, EM Meyerowitz, eds, The Arabidopsis Book. American Society of Plant Biologists, Rockville, MD, doi/10.1199/tab.0009.
  18. Li, L.S., Y.L. Jin, B.R. Lee and T.H. Kim. 2009. Sulfur deficiency effects on sulfate uptake and assimilatory enzymes activity in rate plants. J. Kor. Grass. Forage Sci. 29(2):95-102. https://doi.org/10.5333/KGFS.2009.29.2.095
  19. Logan, H.M., N. Cathala, C. Grignon and J.C. Davidian. 1996. Cloning of a cDNA encoded by a member of the Arabidopsis thaliana ATP sulfurylase multigene family: expression studies in yeast and in relation to plant sulfur nutrition. J. Biol. Chem. 271:12227-12233. https://doi.org/10.1074/jbc.271.21.12227
  20. Noctor, G., L. Gomez, H. Vanacker and C.H. Foyer. 2002. Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signaling. J. Exp. Bot. 53:1283-1304. https://doi.org/10.1093/jexbot/53.372.1283
  21. Rennenberg, H. 1984. The fate of excess sulfur in higher plants. Annu. Rev. Plant Physiol. 35:121- 135. https://doi.org/10.1146/annurev.pp.35.060184.001005
  22. Ruiz, J.M. and E. Blumwald. 2002. Salinityinduced glutathione synthesis in Brassica napus. Planta. 214, 965-969. https://doi.org/10.1007/s00425-002-0748-y
  23. Saito, K. 2004. Sulfur assimilatory metabolism: the long and smelling road. Plant Physiol. 136: 2443-2450. https://doi.org/10.1104/pp.104.046755
  24. Scherer, H.W. 2001. Sulphur in crop production. Eur. J. Agron. 14:81-111. https://doi.org/10.1016/S1161-0301(00)00082-4
  25. Smith, I.K. and A.L. Lang. 1988. Translocation of sulfate in soybean (Glycine max L. Merr). Plant Physiol. 86:798-802. https://doi.org/10.1104/pp.86.3.798
  26. Tausz, M., J.H. Sircel and D. Grill. 2004. The glutathione system as stress marker in plant ecophysiology: is a stress-response concept valid? J. Exp. Bot. 55:1955-1962. https://doi.org/10.1093/jxb/erh194
  27. Zhao, F.J., P.J.A. Whiters, E.J. Evans, J. Monaghan, S.E. Salomon, P.R. Shewry and S.P. McGrath. 1997. Sulphur nutrition: An important factor for the quality of wheat and rapeseed. Soil. Sci. Plant Nutr. 43:1137-1114. https://doi.org/10.1080/00380768.1997.11863731