초록
심방세동(Atrial Fibrillation:AF)은 각종 심장질환에서 비교적 빈번히 발생하는 부정맥으로 알려져 있으며, 그 발병률은 연령의 증가와 더불어 점차 증가한다. 전통적으로 심방세동을 검출하는 방법은 시간 영역 분석법과 주파수 영역분석법이 대부분이었다. 하지만 심전도 신호는 잡음의 영향을 많이 받는 환경에서 검출의 정확도가 떨어지며, 시간 주파수 영역 분석법은 RR 간격에 따라 변화하는 불규칙적 리듬에 관한 정보를 정확하게 얻지 못하는 단점이 있다. 본 연구에서는 부호화와 정보 엔트로피에 기반한 AF 패턴 분석 방법을 제안한다. 이를 위해 먼저 RR 간격 데이터를 차분 분할 방식을 통해 부호 서열화 한 후 그 리듬에 대한 패턴을 분석하고 이를 샤논의 정보 엔트로피를 통해 복잡도를 정량화하여 심방세동을 검출하였다. 성능 평가를 위해 10부터 100까지의 문턱값에 따른 엔트로피를 통해 복잡도를 분석하였으며 MIT-BIH 심방세동 데이터베이스를 이용하여 실험하였다.
Atrial fibrillation (AF) is the most common arrhythmia encountered in clinical practice, and its risk increases with age. Conventionally, the way of detecting AF was the time·frequency domain analysis of RR variability. However, the detection of ECG signal is difficult because of the low amplitude of the P wave and the corruption by the noise. Also, the time·frequency domain analysis of RR variability has disadvantage to get the details of irregular RR interval rhythm. In this study, we describe an atrial fibrillation pattern analysis based on symbolization and information entropy. We transformed RR interval data into symbolic sequence through differential partition, analyzed RR interval pattern, quantified the complexity through Shannon entropy and detected atrial fibrillation. The detection algorithm was tested using the threshold between 10ms and 100ms on two databases, namely the MIT-BIH Atrial Fibrillation Database.