초록
센서네트워크에서는 다수의 유휴노드가 존재하며 네트워크의 이상행위 탐지는 이러한 유휴노드를 이용하여 구현될 수 있다. 최적화 문제로 정의된 탐지노드선정 문제에 대하여, 기존의 방법에서는 중앙처리방식의 유전자 알고리즘을 이용하였다. 본 논문에서는 최적 값으로의 수렴 성을 개선함과 동시에 에너지 효율성을 향상시키는 방법으로써 네트워크의 토폴로지 특성을 고려한 병렬유전자알고리즘을 이용한 방법을 제안하였다. 시뮬레이션을 통하여 제안한 방법이 기존의 방법에 비하여 최적 값으로의 수렴이 개선되었음과 에너지 효율적임을 확인하였다.
There are a number of idle nodes in sensor networks, these can act as detector nodes for anomaly detection in the network. For detecting node selection problem modeled as optimization equation, the conventional method using centralized genetic algorithm was evaluated. In this paper, a method to improve the convergence of the optimal value, while improving energy efficiency as a method of considering the characteristics of the network topology using parallel genetic algorithm is proposed. Through simulation, the proposed method compared with the conventional approaches to the convergence of the optimal value was improved and was found to be energy efficient.