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Abstract
This paper investigates the central subspace related with SIR, DOC and SAVE when the response has more

than two values. The subspaces constructed by SIR, DOC and SAVE are investigated and compared. The
SAVE paradigm is the most comprehensive. In addition, the SAVE coincides with the central subspace when the
conditional distribution of predictors given the response is normally distributed.
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1. Introduction

The sufficient dimension reduction without loss of the original regression information is summarized
by the central subspaces (Cook,1994) containing all information on the regression. Sliced Inverse
Regression (SIR; Li, 1991), Principal Hessian Directions (pHd; Li, 1992) and Sliced Average Variance
Estimation (SAVE; Cook and Weisberg, 1991) are some well known methods to estimate the central
subspace in regression. Cook and Lee (1999) suggested Difference of Covariances(DOC) when the
response has only two values. This paper investigates the central subspace related with SIR, DOC and
SAVE when the response has more than two values.

Consider a regression problem consisting of a univariate response variable Y and a p × 1 random
vector of predictors X = (X1, . . . , Xp)T ∈ Rp. Let η denote a fixed p × q, q 6 p matrix so that

Y X | ηT X

This statement says that the distribution of Y | X is the same as that of Y | ηT X for all values of X in its
marginal sample space. It implies that the p × 1 predictor X can be replaced by the q × 1 predictor
vector ηT X without loss of the original regression information, and represents a useful reduction in
the dimension of the predictor vector.

Let Pη denote the orthogonal projection onto the subspace constructed by η and Qη = I−Pη. Let
Z denote the standardized predictor of X: Z = Σ−1/2

x (X − µ) where µ = E(X) and Σx = Cov(X). Cook
(1994) suggested the foundation of dimension reduction and the central subspace as follows:

Let S denote a subspace, and S(η) denote the subspace constructed by η.

If Y X | ηT X, then S(η) is defined to be a dimension reduction subspace(DRS) for the regression of
Y on X.
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If Sy|x is a DRS and Sy|x ⊂ Sdrs for all DRSs Sdrs, then a subspace Sy|x is defined to be the central
subspace for the regression of Y on X.

Let Sy|x(η) with the basis η be the central subspace for the regression of Y on X, and let Sy|z be the
central subspace for the regression of Y on Z = AT X where A is a full rank, p × p matrix. Then
Sy|z = A−1Sy|x.

If E(Z | ηT Z) = PηZ(linearity condition), then E(Z |Y) ∈ Sy|z and Var(Z |Y) = Qη + PηVar(Z |Y)Pη.
If E(Z | ηT Z) = PηZ and Var(Z | ηT Z) = Qη(constant covariance condition), then E(Z |Y) ∈ Sy|z
and S (Ip − Var(Z |Y)) ⊂ Sy|z.

E(Z | ηT Z) = PηZ and Var(Z | ηT Z) = Qη hold when X is normally distributed (Cook, 1998).

Let µ j = E(Z | Y = j), Σ j = Cov(Z |Y = j), j = 1, . . . , g, and f j = Pr(Y = j). We assume
0 < f j < 1 and

∑g
j=1 f j = 1. Finally, let ν = (ν1, . . . , νg−1) and ∆ = (∆1, . . . ,∆g−1) where ν j = µ j+1−µ j

and ∆ j = Σ j+1 − Σ j for j = 1, . . . , g − 1.

2. SIR, DOC, SAVE and Central Subpace

2.1. Sliced Inverse Regression(SIR)

To review the ideas behind SIR (Li, 1991), we assume that the response Y is continuous. SIR is based
on a discrete version of Y: the range of Y is partitioned into g fixed, non-overlapping slices, J1, . . . , Jg,
and Y is replaced with a discrete response Ỹ = s when Y ∈ Js for s = 1, . . . , g. Clearly, because Ỹ is a
function of Y , Sỹ|x ⊂ Sy|x where Sỹ|x is the central subspace for the regression of Ỹ on X. In practice,
SIR is based on computing the intraslice averages of the standardized predictors Z. In this paper, since
the response Y is polychotomous with g values, the kernel matrix of SIR is given by

g∑
j=1

Pr(Y = j)E(Z | Y = j)E(Z | Y = j)T =

g∑
j=1

f jµ jµ
T
j .

When the response has more than two values, the relation between the central subspace, Sy|x and
the subspace constructed by SIR, SSIR is summarized by the following result.

Proposition 1. LetSSIR denote the subspace constructed by SIR, and the linearity condition E(Z | ηT Z) =
PηZ hold. Then

SSIR = S
 g∑

j=1

f jµ jµ
T
j

 = S(ν1, ν2, . . . , νg−1) = S(ν) ⊂ Sy|x. (2.1)

Proof: Because S(A) = S(AAT ) for any matrix A and S(A) = S(AB) for a nonsingular matrix B,

SSIR = S
( √

f1µ1,
√

f2µ2, . . . ,
√

fgµg

)
= S

(
µ1,µ2, . . . ,µg

)

= S


(
µ1,µ2, . . . ,µg

)


f1 −1 0 . . . 0
f2 1 −1 . . . 0
f3 0 1 . . . 0
...

...
...
. . .

...
fg−1 0 0 . . . −1
fg 0 0 . . . 1




= S(0, ν1, ν2, . . . , νg−1) = S(ν1, ν2, . . . , νg−1) = S(ν).
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The third equality holds since the post-multiplied matrix is full rank and
∑g

j=1 f jµ j = 0. The direct
application of linearity condition E(Z | ηT Z) = PηZ shows SSIR ⊂ Sy|x. Hence the result follows. �

This proposition shows that the subspace SSIR constructed by SIR coincides with the subspace by
ν = (ν1, ν2, . . . , νg−1) when the response has more than two values. Furthermore, SIR provides a part
of the central subspace Sy|x.

2.2. Differences of Covariances(DOC)

For the binary response, the subspace constructed by DOC (Cook and Lee, 1999) is

SDOC = S(Cov(Z |Y = 2) − Cov(Z |Y = 1)) = S(Σ2 − Σ1) = S(∆1).

For the polychotomous response Y with g values, the kernel matrix of DOC is given by

∆ =
(
∆1, . . . ,∆g−1

)
.

When the response Y is polychotomous, the relation between the central subspace, Sy|x and the sub-
space constructed by DOC, SDOC is summarized by the following result.

Proposition 2. Let SDOC denote the subspace constructed by DOC, and also the linearity and constant
covariance conditions, that is, E(Z | ηT Z) = PηZ and Var(Z | ηT Z) = Qη hold. Then

SDOC = S(∆) = S
(
∆1, . . . ,∆g−1

)
⊂ Sy|x. (2.2)

Proof: Since the linearity and constant covariance conditions hold, it is obvious that SDOC ⊂ Sy|x by
Cook and Lee (1999). Hence the result follows. �

This proposition implies that the subspace SDOC constructed by DOC provides a part of the central
subspace Sy|x.

2.3. Sliced Average Variance Estimation(SAVE)

Cook and Weisberg (1991) proposed SAVE to overcome the inability of SIR to detect certain types of
nonlinear regression relationships. Let us consider the population kernel matrix for SAVE to be

Ω = E
{(

Ip − Σy

)2
}
=

g∑
j=1

Pr(Y = j)
(
Ip − Σ j

)2
.

For the binary response, the subspace constructed by SAVE (Cook and Lee, 1999) is

SSAVE = S(Ω) = SDOC = S (
µ2 − µ1,Σ2 − Σ1

)
= S (ν1,∆1) .

For the polychotomous response Y with g values, the kernel matrix of SAVE is given by

Ω =
(
ν1, ν2, . . . , νg−1,∆1,∆2, . . . ,∆g−1

)
= (ν,∆) .

When the response Y is polychotomous, the following proposition shows the relation between the
central subspace, Sy|x and the subspace constructed by SAVE, SSAVE.
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Proposition 3. LetSSAVE denote the subspace constructed by SAVE, and also the linearity and constant
covariance conditions, that is, E(Z | ηT Z) = PηZ and Var(Z | ηT Z) = Qη hold. Then

SSAVE = S(Ω) = S(ν,∆) = S
(
ν1, ν2, . . . , νg−1,∆1,∆2, . . . ,∆g−1

)
= SSIR ⊕ SDOC. (2.3)

Consequently, SSIR ⊂ SSAVE, and SDOC ⊂ SSAVE.

Proof: Because S(A) = S(AAT ) for any matrix A and S(A) = S(AB) for a nonsingular matrix B,

SSAVE = S(Ω) = S
(
E

(
Ip − Σy

)2
)
= S

( √
f1

(
Ip − Σ1

)
,
√

f2
(
Ip − Σ2

)
, . . . ,

√
fg

(
Ip − Σg

))
= S

(
Ip − Σ1, Ip − Σ2, . . . , Ip − Σg

)

= S


(
Ip − Σ1, Ip − Σ2, . . . , Ip − Σg

)


Ip Ip 0 . . . 0
0 −Ip Ip . . . 0
0 0 −Ip . . . 0
...

...
...

. . .
...

0 0 0 . . . Ip

0 0 0 . . . −Ip




= S

(
Ip − Σ1,Σ2 − Σ1,Σ3 − Σ2, . . . ,Σg − Σg−1

)
= S

(
Ip − Σ1,∆1,∆2 . . . ,∆g−1

)
.

Since Ip = Cov(Z) = E(Cov(Z |Y)) + Cov(E(Z | Y)) = E(Σy) + Cov(µy),

Ip − Σ1 = E(Σy) + Cov(µy) − Σ1 =

g∑
j=2

f j(Σ j − Σ1) +
g∑

j=1

f jµ jµ
T
j .

Now we are to show that
∑g

j=2 f j(Σ j − Σ1) is a linear combination of ∆1, ∆2, . . . ,∆g−1 using the
mathematical induction. Consider the case of g = 3,

3∑
j=2

f j(Σ j − Σ1) = f2(Σ2 − Σ1) + f3(Σ3 − Σ1) = f2(Σ2 − Σ1) + f3(Σ3 − Σ2 + (Σ2 − Σ1))

= f2∆1 + f3∆2 + f3∆1 = ( f2 + f3)∆1 + f3∆2 =

2∑
j=1

c j∆ j,

where c j is the constant composed of fi’s.
This means that

∑3
j=2 f j(Σ j − Σ1) is a linear combination of ∆1 and ∆2. Next, suppose that∑k

j=2 f j(Σ j − Σ1) is a linear combination of ∆1, . . . ,∆k−1, that is,

k∑
j=2

f j(Σ j − Σ1) =
k−1∑
j=1

c j∆ j.

Let’s consider the case of g = k + 1.

k+1∑
j=2

f j(Σ j − Σ1) =
k∑

j=2

f j(Σ j − Σ1) + fk+1(Σk+1 − Σ1)
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=

k∑
j=2

f j(Σ j − Σ1) + fk+1 ((Σk+1 − Σk) + (Σk − Σk−1) + · · · + (Σ2 − Σ1))

=

k−1∑
j=1

c j∆ j + fk+1

k∑
j=1

∆ j =

k∑
j=1

c∗j∆ j,

where c∗j is the constant composed of fi’s.
As a result, this shows that

∑g
j=2 f j(Σ j − Σ1) is a linear combination of ∆1, ∆2, . . . ,∆g−1. Thus, by

Proposition 1, SSAVE reduces to

SSAVE = S(Ω) = S
 g∑

j=1

f jµ jµ
T
j ,∆1,∆2, . . . ,∆g−1


= S(ν,∆) = S(ν) ⊕ S(∆) = SSIR ⊕ SDOC

because the property of direct sum ⊕ implies that S(A, B) = S(A)⊕S(B). Hence the results follow. �

This proposition shows that SAVE is the most comprehensive procedure without requiring the linearity
or constant covariance conditions. If the linearity and constant covariance conditions hold, but Z |Y is
not normally distributed, we will still have SSAVE ⊂ Sy|x.

The following fact is that conditional normality of Z | Y guarantees equality of the central and
SAVE subspaces.

Proposition 4. Suppose that Z | Y follows a non-singular multivariate normal distribution: Z | (Y =
j) ∼ Np(µ j, Σ j), j = 1, . . . , g. Then Sy|z = SSAVE.

Proof: Let’s consider only two values ( j, j+1) of the response with g values. Suppose that Z | (Y = j)
has a density p j,

log
Pr(Y = j + 1 |Z)

Pr(Y = j |Z)
= log

p j+1(Z)
p j(Z)

+ constant.

Because Z | (Y = j) ∼ N(µ j, Σ j), for j = 1, . . . , g,

2 log
p j+1(Z)
p j(Z)

= constant + ZT
(
Σ−1

j − Σ−1
j+1

)
Z + 2ZT

(
Σ−1

j+1µ j+1 − Σ−1
j µ j

)
by Seber (1984, p.283). The result of Cook and Lee (1999) reduces to

S
(
Σ−1

j − Σ−1
j+1,Σ

−1
j+1µ j+1 − Σ−1

j µ j

)
= S

(
∆ j, ν j

)
, j = 1, . . . , g − 1.

It follows immediately from this characterizing expression that

Sy|z = S (∆1, ν1) ⊕ S (∆2, ν2) ⊕ · · · ⊕ S
(
∆g−1, νg−1

)
= S

(
ν1, ν2, . . . , νg−1,∆1,∆2, . . . ,∆g−1

)
= S (ν,∆) = SSAVE .

Hence the results follow. �



506 Hakbae Lee, Heemin Lee

3. Discussion

In this paper, we extend and generalize the part in the result by Cook and Lee (1999) to the case
where the response has more than two values. In practice, the conditional normal distribution of
Z given Y guarantees that the subspace constructed by the method SAVE coincides with the central
subspace. Li and Zhu (2007) investigated the asymptotic distribution for SAVE as the general version.
For the practical use, the asymptotic distribution of test statistic for SAVE to determine the structural
dimensionality is under investigation.
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