DOI QR코드

DOI QR Code

Emulsion Polymerization and Surface Properties of Perfluoroalkylethyl Acrylate/Acrylate/Glycidyl Methacrylate Copolymers

퍼플로오로알킬에틸아크릴레이트/아크릴레이트/그리시딜메타크릴레이트 공중합체의 유화중합 및 그들의 표면특성

  • Yoon, Jong-Kook (Korea Institute of Footwear & Leather Technology) ;
  • Lee, Jung-Hee (Korea Institute of Footwear & Leather Technology) ;
  • Kim, Ji-Soo (Department of Organic Material Science and Engineering, Pusan National University) ;
  • Lee, Young-Hee (Department of Organic Material Science and Engineering, Pusan National University) ;
  • Lee, Dong-Jin (Korea Institute of Ceramic Engineering & Technology) ;
  • Kim, Han-Do (Department of Organic Material Science and Engineering, Pusan National University)
  • 윤종국 (한국신발.피혁연구소) ;
  • 이정희 (한국신발.피혁연구소) ;
  • 김지수 (부산대학교 유기소재시스템공학과) ;
  • 이영희 (부산대학교 유기소재시스템공학과) ;
  • 이동진 (한국세라믹기술원) ;
  • 김한도 (부산대학교 유기소재시스템공학과)
  • Received : 2012.03.29
  • Accepted : 2012.05.01
  • Published : 2012.06.30

Abstract

A series of acrylic copolymers containing perfluoroalkyl acrylate were synthesized by 2-step emulsion polymerization of variety of acrylate monomers (ethyl acrylate, butyl acrylate or methyl methacrylate) with perfluoroalkyl ethyl acrylate (PFA) and glycidyl methacrylate (GMA) monomers. This study focused on effects of monomer compositions (the kind of acrylate monomer, contents of PFA and GMA) and composition of surfactants [(sodium dodecyl sulphate/nonylphenol 10mole ethoxylate (NP-10)] and initiator content on the contact angles and surface free energy. It was found that the copolymer having an optimum composition (BA : 87 wt%, GMA : 8.7 wt% and PFA : 4.3 wt%) was shown to be quite surface active [surface free energy : 19.89 mN/m and contact angles : $103.5^{\circ}$ (water) and $78.7^{\circ}$ (methylene iodide)] in the solid state. This result suggests that the optimal copolymer containing fluorinated monomer synthesized in this study have high potential as a low surface energy material, which may have high oil- and water-repellent surface and have been proposed as acrylic syntan for leather and also as soil-resistant/oil and water repellent coating for textiles and wood etc.

플로오로 함유 아크릴 공중합체를 여러 가지 조성의 아크릴 단량체[AA : 에틸 아크릴레이트(EA), 부틸아크릴레이트(BA) 혹은 메틸메타크릴레이트(MMA)], 퍼플로오로알킬에틸 아크릴레이트(PFA) 및 그리시딜메타크릴레이트(GMA)로부터 유화중합법(유화제 : 소디움 도데실 설페이트/노닐페놀에톡실레이트)으로 합성하였다. 아크릴 단량체 중에서 BA를 사용한 경우 가장 낮은 표면에너지를 가진 아크릴 공중합체를 얻을 수 있었으며, 최적량의 단량체 조성(BA: 87 wt%, GMA : 8.7 wt% 및 PFA : 4.3 wt%)에서 얻은 공중합체의 표면에너지/물에 대한 접촉각/methylene iodide에 대한 접촉각은 19.89 mN/m /$103.5^{\circ}$/$78.7^{\circ}$로서 높은 표면활성을 지닌 것을 알 수 있었다. 따라서 본 연구에서 얻은 최적의 아크릴 공중합체는 높은 발수 및 발유 표면 특성을 지닌 코팅소재로 활용할 수 있을 것이다.

Keywords

References

  1. Natanya, M. L. H., Kaja, J., and Soren, H., "Fluoropolymer Materials and Architectures Prepared by Controlled Radical Polymerization," Eur. Polym. J., 43, 255-293 (2007). https://doi.org/10.1016/j.eurpolymj.2006.11.016
  2. Berent, M. K., and Zisman, W. A., "Wetting Properties of Acrylic and Methacrylic Polymers Containing fluoroinate Side Chains," J. Phys. Chem., 66, 1207-1208 (1962). https://doi.org/10.1021/j100812a518
  3. Sharfrin, E. G. and Zisman, W. A., "Constitutive Relations in the Wetting of Low Energy Surfaces and the Theory of the Retraction Method of Preparing Monolayers," J. Phys. Chem., 64, 519-524 (1960). https://doi.org/10.1021/j100834a002
  4. Hond, K., Morita, M., Otsuka, H, and Takahara, A., "Molecular Aggregation Structure and Surface Properties of Poly (fluoroalkyl acrylate) Thin Films," Macromolecules, 38, 5699-5705 (2005). https://doi.org/10.1021/ma050394k
  5. Jiang, W.-C., Meng, W. -D., and Qing, F. -L., "Synthesis of a Perfluorooctylated Polyacrylate and Its Application on Cotton Fabrics," J. Appl. Polym. Sci., 98, 222-226 (2005). https://doi.org/10.1002/app.22067
  6. Masamichi, M., Hiroko, O., and Motonobu, K., "Surface Properties of Perfluoroalkylethyl Acrylate/n-Alkyl Acrylate Copolymers," J. Appl. Polym. Sci., 73, 1741-1749 (1999). https://doi.org/10.1002/(SICI)1097-4628(19990829)73:9<1741::AID-APP15>3.0.CO;2-F
  7. Kim, H. J, Lee, Y. T., Park, I. J., and Lee, S. B., "Synthesis and Surface Property of Aqueous Fluorine-Containing Polyurethane," J. Colloid and Int. Sci., 241, 269-274 (2001). https://doi.org/10.1006/jcis.2001.7750
  8. Chen, S. I., Sheu, Y. L., and Sheu, J. L., Lee, C. T., and Lin, J. S., "Morphology of Perfluoroalkylacrylate/Stearyl Methacrylate Polymers and Their Effect on Water/Oil Repellency," J. Appl. Polym. Sci., 63, 903-909 (1997). https://doi.org/10.1002/(SICI)1097-4628(19970214)63:7<903::AID-APP10>3.0.CO;2-S
  9. Park, I. J., Lee, S. B., and Ko, J. C., "Surface Properties of Random Copolymer Containing Perfluoroalkyl Perfluoroalkyl Ethyl Acrylate," Hwahak Konghak (J. Kor. Institute of Chem. Eng.), 30, 303-309 (1992).
  10. Lee, C. Y., Ha, J. W., Park, I. J., and Lee, S. B., "Surface Characteristics of Water-Soluble Cationic Fluoro Copolymers Containing Perfluoroalkyl, Quaternized Amino, and Hydroxyl Groups," J. Appl. Polym. Sci., 86, 3702-3707 (2002). https://doi.org/10.1002/app.11363
  11. Yang, T., Yao, L., Peng, H., Cheng, S., and Park, I. J., "Characterization of a Low-Wettable Surface Based on Perfluoroalkyl Acrylate Copolymers," J. Fluorine Chem., 127, 1105-1110 (2006). https://doi.org/10.1016/j.jfluchem.2006.05.019
  12. Park, I. J., Lee, S. B., and Choi, C. K., "Surface Properties of the Fluorine-Containing Graft Copolymer of Poly ((perfluoroalkyl) ethyl methacrylate)-g-poly (methyl methacrylate," Macromolecules, 31, 7555-7558 (1998). https://doi.org/10.1021/ma970262u
  13. Shen, Y. X., and Thomson, R., "Fluorinated Acrylic Monomers Containing Urethane Groups and Their Polymers," U.S. Patent No. 5,446,118 (1995).
  14. Kim, Y. W., Chung, K. W., Lee, E. A. and Seo, Y. G., "Surface Properties of Urethane Coating Containing Perfluorinated Additives," J. Ind. and Eng. Chem., 14, 752-758 (2008). https://doi.org/10.1016/j.jiec.2008.07.002
  15. Ho, T., and Wynne, K. J., "A New Fluorinated Polyurethane: Polymerization, Characterization, and Mechanical Properties," Macromolecules, 25, 3521-3527 (1992). https://doi.org/10.1021/ma00039a033
  16. Yoon, S. C., and Ratner, B. D., "Surface and Bulk Structure of Segmented Poly (ether uretrhanes) with Perfluoro Chain Extenders. 3. Effect of Annealing, Casting Solvent, and Casting Conditions," Macromolecules, 21, 2401-2404 (1988). https://doi.org/10.1021/ma00186a017
  17. Tan, H., Xie, X. Y., Li, J. H., Zhong, Y. P., and Fu, Q., "Synthesis and Surface Mobility of Segmented Polyurethanes with Fluorinated Side Chains Attached to Hard Block," Polym., 45, 1495-1502 (2004). https://doi.org/10.1016/j.polymer.2003.12.068
  18. Shin, J. S., Kum, C. H., Yun, J. K., and Park, I. K. " Development of Perfluoroalkyl Derivative for $Cr^{3+}$ Adsorbent Promotion Process," Clean Technol., 14(3), 193-203 (2008).
  19. Kaelble, D. H., and Moacanin, J. "A Surface Energy Analysis of Bioadhesion," Polym., 18, 475-482 (1977). https://doi.org/10.1016/0032-3861(77)90164-1

Cited by

  1. Synthesis and Thermal Cyclization of Aromatic Polyhydroxyamides(II) -Effect of Fluoro-substituents- vol.50, pp.5, 2013, https://doi.org/10.12772/TSE.2013.50.308