DOI QR코드

DOI QR Code

Comprehensive review on synthesis and adsorption behaviors of graphene-based materials

  • Lee, Seul-Yi (Korea CCS R&D Center, Korea Institute of Energy Research) ;
  • Park, Soo-Jin (Department of Chemistry, Inha University)
  • Received : 2012.01.03
  • Accepted : 2012.03.21
  • Published : 2012.04.30

Abstract

Graphene is the thinnest known materials in the universe and the strongest ever measured. Graphene has emerged as an exotic material of the 21st century and received world-wide attention due to its exceptional charge transport, thermal, optical, mechanical, and adsorptive properties. Recently, graphene and its derivatives are considered promising candidates as adsorbent for $H_2$ storage, $CO_2$ capture, etc. and as the sensors for detecting individual gas molecule. The main purpose of this review is to comprehensive the synthesis method of graphene and to brief the adsorption behaviors of graphene and its derivatives.

Keywords

References

  1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science, 306, 666 (2004). http://dx.doi.org/10.1126/science.1102896.
  2. Tkachev S, Buslaeva E, Gubin S. Graphene: a novel carbon nanomaterial. Inorg Mater, 47, 1 (2011). http://dx.doi.org/10.1134/s0020168511010134.
  3. Singh V, Joung D, Zhai L, Das S, Khondaker SI, Seal S. Graphene based materials: past, present and future. Prog Mater Sci, 56, 1178(2011). http://dx.doi.org/10.1016/j.pmatsci.2011.03.003.
  4. Novoselov KS, Jiang Z, Zhang Y, Morozov SV, Stormer HL, Zeitler U, Maan JC, Boebinger GS, Kim P, Geim AK. Room-temperature quantum Hall effect in graphene. Science, 315, 1379 (2007). http:// dx.doi.org/10.1126/science.1137201.
  5. Ritter KA, Lyding JW. The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons. Nat Mater, 8, 235 (2009). http://dx.doi.org/10.1038/nmat2378.
  6. Ubbelohde AR, Lewis FA. Graphite and its Crystal Compounds, Clarendon Press, Oxford (1960).
  7. Geim AK, Novoselov KS. The rise of graphene. Nat Mater, 6, 183 (2007). http://dx.doi.org/10.1038/nmat1849.
  8. Chung DDL. Review graphite. J Mater Sci, 37, 1475 (2002). http:// dx.doi.org/10.1023/a:1014915307738.
  9. Stoller MD, Park S, Zhu Y, An J, Ruoff RS. Graphene-based ultracapacitors. Nano Lett, 8, 3498 (2008). http://dx.doi.org/10.1021/nl802558y.
  10. Bunch JS, van der Zande AM, Verbridge SS, Frank IW, Tanenbaum DM, Parpia JM, Craighead HG, McEuen PL. Electromechanical resonators from graphene sheets. Science, 315, 490 (2007). http://dx.doi.org/10.1126/science.1136836.
  11. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN. Superior thermal conductivity of single-layer graphene. Nano Lett, 8, 902 (2008). http://dx.doi.org/10.1021/nl0731872.
  12. Li X, Wang X, Zhang L, Lee S, Dai H. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science, 319, 1229 (2008). http://dx.doi.org/10.1126/science.1150878.
  13. Shenderova OA, Zhirnov VV, Brenner DW. Carbon nanostructures. Crit Rev Solid State Mater Sci, 27, 227 (2002). http://dx.doi. org/10.1080/10408430208500497.
  14. Krishnan A, Dujardin E, Treacy MMJ, Hugdahl J, Lynum S, Ebbesen TW. Graphitic cones and the nucleation of curved carbon surfaces. Nature, 388, 451 (1997). https://doi.org/10.1038/41284
  15. Nagashima A, Nuka K, Itoh H, Ichinokawa T, Oshima C, Otani S. Electronic states of monolayer graphite formed on TiC(111) surface. Surf Sci, 291, 93 (1993). http://dx.doi.org/10.1016/0039-6028(93)91480-d.
  16. Forbeaux I, Themlin JM, Debever JM. Heteroepitaxial graphite on 6H-SiC(0001): interface formation through conduction-band electronic structure. Phys Rev B, 58, 16396 (1998). http://dx.doi. org/10.1103/PhysRevB.58.16396.
  17. Wu J, Becerril HA, Bao Z, Liu Z, Chen Y, Peumans P. Organic solar cells with solution-processed graphene transparent electrodes. Appl Phys Lett, 92, 263302 (2008). http://dx.doi. org/10.1063/1.2924771.
  18. Ohta T, Bostwick A, Seyller T, Horn K, Rotenberg E. Controlling the electronic structure of bilayer graphene. Science, 313, 951 (2006). http://dx.doi.org/10.1126/science.1130681.
  19. de Heer WA, Berger C, Wu X, First PN, Conrad EH, Li X, Li T, Sprinkle M, Hass J, Sadowski ML, Potemski M, Martinez G. Epitaxial graphene. Solid State Commun, 143, 92 (2007). http:// dx.doi.org/10.1016/j.ssc.2007.04.023.
  20. Emtsev KV, Bostwick A, Horn K, Jobst J, Kellogg GL, Ley L, McChesney JL, Ohta T, Reshanov SA, Rohrl J, Rotenberg E, Schmid AK, Waldmann D, Weber HB, Seyller T. Towards wafersize graphene layers by atmospheric pressure graphitization of silicon carbide. Nat Mater, 8, 203 (2009). http://dx.doi.org/10.1038/nmat2382.
  21. Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn JH, Kim P, Choi JY, Hong BH. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 457, 706 (2009). http://dx.doi.org/10.1038/nature07719.
  22. Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS, Kong J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett, 9, 30 (2008). http://dx.doi.org/10.1021/nl801827v.
  23. Yu Q, Lian J, Siriponglert S, Li H, Chen YP, Pei S-S. Graphene segregated on Ni surfaces and transferred to insulators. Appl Phys Lett, 93, 113103 (2008). http://dx.doi.org/10.1063/1.2982585.
  24. Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L, Ruoff RS. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 324, 1312 (2009). http://dx.doi.org/10.1126/science.1171245.
  25. Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov AN, Conrad EH, First PN, de Heer WA. Electronic confinement and coherence in patterned epitaxial graphene. Science, 312, 1191 (2006). http://dx.doi.org/10.1126/science. 1125925.
  26. Hass J, Heer WAd, Conrad EH. The growth and morphology of epitaxial multilayer graphene. J Phys: Condens Matter, 20, 323202 (2008). http://dx.doi.org/10.1088/0953-8984/20/32/323202.
  27. Bae S, Kim H, Lee Y, Xu X, Park JS, Zheng Y, Balakrishnan J, Lei T, Ri Kim H, Song YI, Kim YJ, Kim KS, Ozyilmaz B, Ahn JH, Hong BH, Iijima S. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol, 5, 574 (2010). http://dx.doi.org/10.1038/nnano.2010.132.
  28. Berger C, Song Z, Li T, Li X, Ogbazghi AY, Feng R, Dai Z, Marchenkov AN, Conrad EH, First PN, de Heer WA. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphenebased nanoelectronics. J Phys Chem B, 108, 19912 (2004). http:// dx.doi.org/10.1021/jp040650f.
  29. Jauregui LA, Cao H, Wu W, Yu Q, Chen YP. Electronic properties of grains and grain boundaries in graphene grown by chemical vapor deposition. Solid State Commun, 151, 1100 (2011). http:// dx.doi.org/10.1016/j.ssc.2011.05.023.
  30. Cao H, Yu Q, Jauregui LA, Tian J, Wu W, Liu Z, Jalilian R, Benjamin DK, Jiang Z, Bao J, Pei SS, Chen YP. Electronic transport in chemical vapor deposited graphene synthesized on Cu: quantum Hall effect and weak localization. Appl Phys Lett, 96, 122106 (2010). http://dx.doi.org/10.1063/1.3371684.
  31. Eizenberg M, Blakely JM. Carbon monolayer phase condensation on Ni(111). Surf Sci, 82, 228 (1979). http://dx.doi. org/10.1016/0039-6028(79)90330-3.
  32. Isett LC, Blakely JM. Segregation isosteres for carbon at the (100) surface of nickel. Surf Sci, 58, 397 (1976). http://dx.doi. org/10.1016/0039-6028(76)90478-7.
  33. Somani PR, Somani SP, Umeno M. Planer nano-graphenes from camphor by CVD. Chem Phys Lett, 430, 56 (2006). http://dx.doi. org/10.1016/j.cplett.2006.06.081.
  34. Chen YP, Yu Q. Nanomaterials: graphene rolls off the press. Nat Nanotechnol, 5, 559 (2010). http://dx.doi.org/10.1038/nnano. 2010.158.
  35. Meyer JC, Geim AK, Katsnelson MI, Novoselov KS, Booth TJ, Roth S. The structure of suspended graphene sheets. Nature, 446, 60 (2007). http://dx.doi.org/10.1038/nature05545.
  36. Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL. Ultrahigh electron mobility in suspended graphene. Solid State Commun, 146, 351 (2008). http://dx.doi. org/10.1016/j.ssc.2008.02.024.
  37. Bolotin KI, Sikes KJ, Hone J, Stormer HL, Kim P. Temperature- dependent transport in suspended graphene. Phys Rev Lett, 101, 096802 (2008). http://dx.doi.org/10.1103/PhysRevLett.101.096802.
  38. Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK. Two-dimensional atomic crystals. Proc Natl Acad Sci USA, 102, 10451 (2005). http://dx.doi.org/10.1073/pnas.0502848102.
  39. Park SJ. van der Waals interaction at surfaces. In: Somasundaran P, ed. Encyclopedia of Surface and Colloid Science. 2nd ed., Taylor & Francis, New York, 5570 (2006).
  40. Park SJ. Long-range force contributions to surface dynamics. In: Hsu JP, ed. Interfacial Forces and Fields: Theory and Applications, Marcel Dekker, New York, 385 (1999).
  41. Li X, Cai W, Colombo L, Ruoff RS. Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett, 9, 4268 (2009). http://dx.doi.org/10.1021/nl902515k.
  42. Park SJ, Seo MK. Interface Science and Composites, Academic Press, Boston (2011).
  43. Hummers WS Jr, Offeman RE. Preparation of graphitic oxide. J Am Chem Soc, 80, 1339 (1958). http://dx.doi.org/10.1021/ja01539a017.
  44. Allen MJ, Tung VC, Kaner RB. Honeycomb carbon: a review of graphene. Chem Rev, 110, 132 (2009). http://dx.doi.org/10.1021/cr900070d.
  45. Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S, Mc- Govern IT, Holland B, Byrne M, Gun'Ko YK, Boland JJ, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari AC, Coleman JN. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol, 3, 563 (2008). http://dx.doi.org/10.1038/nnano.2008.215.
  46. Lotya M, Hernandez Y, King PJ, Smith RJ, Nicolosi V, Karlsson LS, Blighe FM, De S, Wang Z, McGovern IT, Duesberg GS, Coleman JN. Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J Am Chem Soc, 131, 3611 (2009). http://dx.doi.org/10.1021/ja807449u.
  47. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM. Improved synthesis of graphene oxide. ACS Nano, 4, 4806 (2010). http://dx.doi.org/10.1021/nn1006368.
  48. Kim KS, Park SJ. Influence of multi-walled carbon nanotubes on the electrochemical performance of graphene nanocomposites for supercapacitor electrodes. Electrochim Acta, 56, 1629 (2011). http://dx.doi.org/10.1016/j.electacta.2010.10.043.
  49. Nakajima T, Mabuchi A, Hagiwara R. A new structure model of graphite oxide. Carbon, 26, 357 (1988). http://dx.doi. org/10.1016/0008-6223(88)90227-8.
  50. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS. Synthesis of graphenebased nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 45, 1558 (2007). http://dx.doi.org/10.1016/j.carbon.2007.02.034.
  51. Lomeda JR, Doyle CD, Kosynkin DV, Hwang WF, Tour JM. Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets. J Am Chem Soc, 130, 16201 (2008). http:// dx.doi.org/10.1021/ja806499w.
  52. Tung VC, Allen MJ, Yang Y, Kaner RB. High-throughput solution processing of large-scale graphene. Nat Nanotechnol, 4, 25 (2009). http://dx.doi.org/10.1038/nnano.2008.329.
  53. Ren PG, Yan DX, Ji X, Chen T, Li ZM. Temperature dependence of graphene oxide reduced by hydrazine hydrate. Nanotechnology, 22, 055705 (2011). http://dx.doi.org/10.1088/0957-4484/22/5/055705.
  54. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS. Graphenebased composite materials. Nature, 442, 282 (2006). http://dx.doi. org/10.1038/nature04969.
  55. Wang G, Yang J, Park J, Gou X, Wang B, Liu H, Yao J. Facile synthesis and characterization of graphene nanosheets. J Phys Chem C, 112, 8192 (2008). http://dx.doi.org/10.1021/jp710931h.
  56. Si Y, Samulski ET. Synthesis of water soluble graphene. Nano Lett, 8, 1679 (2008). http://dx.doi.org/10.1021/nl080604h.
  57. Erickson K, Erni R, Lee Z, Alem N, Gannett W, Zettl A. Determination of the local chemical structure of graphene oxide and reduced graphene oxide. Adv Mater, 22, 4467 (2010). http://dx.doi. org/10.1002/adma.201000732.
  58. McAllister MJ, Li JL, Adamson DH, Schniepp HC, Abdala AA, Liu J, Herrera-Alonso M, Milius DL, Car R, Prud'homme RK, Aksay IA. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem Mater, 19, 4396 (2007). http:// dx.doi.org/10.1021/cm0630800.
  59. Schniepp HC, Li J-L, McAllister MJ, Sai H, Herrera-Alonso M, Adamson DH, Prud'homme RK, Car R, Saville DA, Aksay IA. Functionalized single graphene sheets derived from splitting graphite oxide. J Phys Chem B, 110, 8535 (2006). http://dx.doi. org/10.1021/jp060936f.
  60. Kaniyoor A, Baby TT, Arockiadoss T, Rajalakshmi N, Ramaprabhu S. Wrinkled graphenes: a study on the effects of synthesis parameters on exfoliation-reduction of graphite oxide. J Phys Chem C, 115, 17660 (2011). http://dx.doi.org/10.1021/jp204039k.
  61. Subrahmanyam KS, Vivekchand SRC, Govindaraj A, Rao CNR. A study of graphenes prepared by different methods: characterization, properties and solubilization. J Mater Chem, 18, 1517 (2008). http://dx.doi.org/10.1039/B716536F.
  62. Rao CNR, Sood AK, Subrahmanyam KS, Govindaraj A. Graphene: the new two-dimensional nanomaterial. Angew Chem Int Ed, 48, 7752 (2009). http://dx.doi.org/10.1002/anie.200901678.
  63. Morales GM, Schifani P, Ellis G, Ballesteros C, Martínez G, Barbero C, Salavagione HJ. High-quality few layer graphene produced by electrochemical intercalation and microwave-assisted expansion of graphite. Carbon, 49, 2809 (2011). http://dx.doi. org/10.1016/j.carbon.2011.03.008.
  64. Andersson OE, Prasad BLV, Sato H, Enoki T, Hishiyama Y, Kaburagi Y, Yoshikawa M, Bandow S. Structure and electronic properties of graphite nanoparticles. Phys Rev B, 58, 16387 (1998). http://dx.doi.org/10.1103/PhysRevB.58.16387.
  65. Prasad BLV, Sato H, Enoki T, Hishiyama Y, Kaburagi Y, Rao AM, Eklund PC, Oshida K, Endo M. Heat-treatment effect on the nanosized graphite $\pi$-electron system during diamond to graphite conversion. Phys Rev B, 62, 11209 (2000). http://dx.doi.org/10.1103/PhysRevB.62.11209.
  66. Subrahmanyam KS, Panchakarla LS, Govindaraj A, Rao CNR. Simple method of preparing graphene flakes by an arc-discharge method. J Phys Chem C, 113, 4257 (2009). http://dx.doi. org/10.1021/jp900791y.
  67. Rao CNR, Subrahmanyam KS, Matte HSSR, Abdulhakeem B, Govindaraj A, Barun D, Prashant K, Anupama G, Dattatray JL. A study of the synthetic methods and properties of graphenes. Sci Technol Adv Mater, 11, 054502 (2010). http://dx.doi.org/10.1088/1468-6996/11/5/054502.
  68. Seshadri R, Govindaraj A, Aiyer HN, Sen R, Subbanna GN, Raju AR, Rao CNR. Investigations of carbon nanotubes. Curr Sci, 66, 839 (1994).
  69. Zhang RQ, Sarkar AD. Theoretical studies on formation, property, tuning and adsorption of graphene segments. In: Mikhailov S, ed. Physics and Applications of Graphene--Theory, InTech Openbook, Chapter 1 (2011).
  70. Lin CS, Zhang RQ, Lee ST, Elstner M, Frauenheim T, Wan LJ. Simulation of water cluster assembly on a graphite surface. J Phys Chem B, 109, 14183 (2005). http://dx.doi.org/10.1021/jp050459l.
  71. Kim BJ, Lee YS, Park SJ. Novel porous carbons synthesized from polymeric precursors for hydrogen storage. Int J Hydrogen Energy, 33, 2254 (2008). http://dx.doi.org/10.1016/j.ijhydene.2008.02.019.
  72. Yoo HM, Lee SY, Kim BJ, Park SJ. Influence of phosphoric acid treatment on hydrogen adsorption behaviors of activated carbons. Carbon Lett, 12, 112 (2011). http://dx.doi.org/10.5714/CL.2011.12.2.112.
  73. Saha D, Deng S. Hydrogen adsorption on Pd- and Ru-doped C60 fullerene at an ambient temperature. Langmuir, 27, 6780 (2011). http://dx.doi.org/10.1021/la200091s.
  74. Chen J, Wu F. Review of hydrogen storage in inorganic fullerene- like nanotubes. Appl Phys A, 78, 989 (2004). http://dx.doi. org/10.1007/s00339-003-2419-7.
  75. Lee SY, Park SJ. Effect of temperature on activated carbon nanotubes for hydrogen storage behaviors. Int J Hydrogen Energy, 35, 6757 (2010). http://dx.doi.org/10.1016/j.ijhydene.2010.03.114.
  76. Park SJ, Lee SY. Hydrogen storage behaviors of platinum-supported multi-walled carbon nanotubes. Int J Hydrogen Energy, 35, 13048 (2010). http://dx.doi.org/10.1016/j.ijhydene.2010.04.083.
  77. Lee SY, Park SJ. Influence of $CO_{2}$ activation on hydrogen storage behaviors of platinum-loaded activated carbon nanotubes. J Solid State Chem, 183, 2951 (2010). http://dx.doi.org/10.1016/j.jssc.2010.08.035.
  78. Lee SY, Park SJ. Effect of chemical treatments on hydrogen storage behaviors of multi-walled carbon nanotubes. Mater Chem Phys, 124, 1011 (2010). http://dx.doi.org/10.1016/j.matchemphys.2010.08.022.
  79. Jung MJ, Im JS, Jeong E, Jin H, Lee YS. Hydrogen adsorption of pan-based porous carbon nanofibers using MgO as the substrate. Carbon Lett, 10, 217 (2009). https://doi.org/10.5714/CL.2009.10.3.217
  80. Sharon M, Sharon M, Kalita G, Mukherjee B. Hydrogen storage by carbon fibers synthesized by pyrolysis of cotton fibers. Carbon Lett, 12, 39 (2011). https://doi.org/10.5714/CL.2011.12.1.039
  81. Im JS, Kwon O, Kim YH, Park SJ, Lee YS. The effect of embedded vanadium catalyst on activated electrospun CFs for hydrogen storage. Microporous Mesoporous Mater, 115, 514 (2008). http:// dx.doi.org/10.1016/j.micromeso.2008.02.027.
  82. Lee SY, Park SJ. Preparation and characterization of ordered porous carbons for increasing hydrogen storage behaviors. J Solid State Chem, 184, 2655 (2011). http://dx.doi.org/10.1016/j.jssc.2011.07.034.
  83. Jiang J, Gao Q, Zheng Z, Xia K, Hu J. Enhanced room temperature hydrogen storage capacity of hollow nitrogen-containing carbon spheres. Int J Hydrogen Energy, 35, 210 (2010). http://dx.doi.org/10.1016/j.ijhydene.2009.10.042.
  84. Lee SY, Park SJ. Effect of platinum doping of activated carbon on hydrogen storage behaviors of metal-organic frameworks-5. Int J Hydrogen Energy, 36, 8381 (2011). http://dx.doi.org/10.1016/j.ijhydene.2011.03.038.
  85. Park SJ, Lee SY. Hydrogen storage behaviors of carbon nanotubes/ metal-organic frameworks-5. Carbon Lett, 10, 19 (2009). https://doi.org/10.5714/CL.2009.10.1.019
  86. Tylianakis E, Psofogiannakis GM, Froudakis GE. Li-doped pillared graphene oxide: a graphene-based nanostructured material for hydrogen storage. J Phys Chem Lett, 1, 2459 (2010). http:// dx.doi.org/10.1021/jz100733z.
  87. Srinivas G, Zhu Y, Piner R, Skipper N, Ellerby M, Ruoff R. Synthesis of graphene-like nanosheets and their hydrogen adsorption capacity. Carbon, 48, 630 (2010). http://dx.doi.org/10.1016/j.carbon.2009.10.003.
  88. Bourlinos AB, Steriotis TA, Karakassides M, Sanakis Y, Tzitzios V, Trapalis C, Kouvelos E, Stubos A. Synthesis, characterization and gas sorption properties of a molecularly-derived graphite oxidelike foam. Carbon, 45, 852 (2007). http://dx.doi.org/10.1016/j.carbon.2006.11.008.
  89. Ma LP, Wu ZS, Li J, Wu ED, Ren WC, Cheng HM. Hydrogen adsorption behavior of graphene above critical temperature. Int J Hydrogen Energy, 34, 2329 (2009). http://dx.doi.org/10.1016/j.ijhydene.2008.12.079.
  90. Ghosh A, Subrahmanyam KS, Krishna KS, Datta S, Govindaraj A, Pati SK, Rao CNR. Uptake of $H_{2}$ and $CO_{2}$ by graphene. J Phys Chem C, 112, 15704 (2008). http://dx.doi.org/10.1021/jp805802w.
  91. Peigney A, Laurent C, Flahaut E, Bacsa RR, Rousset A. Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon, 39, 507 (2001). http://dx.doi.org/10.1016/s0008-6223(00)00155-x.
  92. Kaneko K, Ishii C, Ruike M, kuwabara H. Origin of superhigh surface area and microcrystalline graphitic structures of activated carbons. Carbon, 30, 1075 (1992). http://dx.doi.org/10.1016/0008-6223(92)90139-n.
  93. Bhatia SK, Myers AL. Optimum conditions for adsorptive storage. Langmuir, 22, 1688 (2006). http://dx.doi.org/10.1021/la0523816.
  94. Wang L, Lee K, Sun YY, Lucking M, Chen Z, Zhao JJ, Zhang SB. Graphene oxide as an ideal substrate for hydrogen storage. ACS Nano, 3, 2995 (2009). http://dx.doi.org/10.1021/nn900667s.
  95. Kim BJ, Park SJ. Optimization of the pore structure of nickel/ graphite hybrid materials for hydrogen storage. Int J Hydrogen Energy, 36, 648 (2011). http://dx.doi.org/10.1016/j.ijhydene.2010.09.097.
  96. Kubas GJ, Ryan RR, Swanson BI, Vergamini PJ, Wasserman HJ. Characterization of the first examples of isolable molecular hydrogen complexes, $ M(CO)_{3}(PR_{3})_{2}(H_{2})$ (M = molybdenum or tungsten; R = Cy or isopropyl). Evidence for a side-on bonded dihydrogen ligand. J Am Chem Soc, 106, 451 (1984). http://dx.doi.org/10.1021/ja00314a049.
  97. Kubas GJ. Molecular hydrogen complexes: coordination of a .sigma. bond to transition metals. Acc Chem Res, 21, 120 (1988). http://dx.doi.org/10.1021/ar00147a005.
  98. Hoang TKA, Antonelli DM. Exploiting the Kubas interaction in the design of hydrogen storage materials. Adv Mater, 21, 1787 (2009). http://dx.doi.org/10.1002/adma.200802832.
  99. Singh AK, Sadrzadeh A, Yakobson BI. Metallacarboranes: toward promising hydrogen storage metal organic frameworks. J Am Chem Soc, 132, 14126 (2010). http://dx.doi.org/10.1021/ja104544s.
  100. Skipper CVJ, Hamaed A, Antonelli DM, Kaltsoyannis N. Computational study of silica-supported transition metal fragments for Kubas-type hydrogen storage. J Am Chem Soc, 132, 17296 (2010). http://dx.doi.org/10.1021/ja107539j.
  101. Hamaed A, Hoang TKA, Moula G, Aroca R, Trudeau ML, Antonelli DM. Hydride-induced amplification of performance and binding enthalpies in chromium hydrazide gels for Kubas-type hydrogen storage. J Am Chem Soc, 133, 15434 (2011). http:// dx.doi.org/10.1021/ja2021944.
  102. Zhu H, Chen Y, Li S, Yang X, Liu Y. Novel sandwich-type dimetallocenes: toward promising candidate media for highcapacity hydrogen storage. Int J Hydrogen Energy, 36, 11810 (2011). http://dx.doi.org/10.1016/j.ijhydene.2011.04.024.
  103. Mishra AK, Ramaprabhu S. Carbon dioxide adsorption in graphene sheets. AIP Advances, 1, 032152 (2011). http://dx.doi. org/10.1063/1.3638178.
  104. Kaniyoor A, Baby TT, Ramaprabhu S. Graphene synthesis via hydrogen induced low temperature exfoliation of graphite oxide. J Mater Chem, 20, 8467 (2010). http://dx.doi.org/10.1039/C0JM01876G.
  105. Mishra AK, Ramaprabhu S. Nano magnetite decorated multiwalled carbon nanotubes: a robust nanomaterial for enhanced carbon dioxide adsorption. Energy Environ Sci, 4, 889 (2011). http://dx.doi.org/10.1039/C0EE00076K.
  106. Siriwardane RV, Shen MS, Fisher EP, Poston JA. Adsorption of $CO_{2}$ on molecular sieves and activated carbon. Energy Fuels, 15, 279 (2001). http://dx.doi.org/10.1021/ef000241s.
  107. Gensterblum Y, van Hemert P, Billemont P, Busch A, Charriere D, Li D, Krooss BM, de Weireld G, Prinz D, Wolf KHAA. European inter-laboratory comparison of high pressure $CO_{2}$ sorption isotherms. I: activated carbon. Carbon, 47, 2958 (2009). http:// dx.doi.org/10.1016/j.carbon.2009.06.046.
  108. Zhang Z, Xu M, Wang H, Li Z. Enhancement of $CO_{2}$ adsorption on high surface area activated carbon modified by $N_{2}$, $H_{2}$ and ammonia. Chem Eng J, 160, 571 (2010). http://dx.doi.org/10.1016/j.cej.2010.03.070.
  109. Cavenati S, Grande CA, Rodrigues AE. Adsorption equilibrium of methane, carbon dioxide, and nitrogen on zeolite 13X at high pressures. J Chem Eng Data, 49, 1095 (2004). http://dx.doi. org/10.1021/je0498917.
  110. Millward AR, Yaghi OM. Metal−organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. J Am Chem Soc, 127, 17998 (2005). http://dx.doi. org/10.1021/ja0570032.
  111. Cazorla C, Shevlin SA, Guo ZX. Calcium-based functionalization of carbon materials for $CO_{2}$ capture: a first-principles computational study. J Phys Chem C, 115, 10990 (2011). http:// dx.doi.org/10.1021/jp201786h.
  112. Carrillo I, Rangel E, Magana LF. Adsorption of carbon dioxide and methane on graphene with a high titanium coverage. Carbon, 47, 2758 (2009). http://dx.doi.org/10.1016/j.carbon.2009.06.022.
  113. Ma Q, Rosenberg RA. Interaction of Ti with the (0001) surface of highly oriented pyrolitic graphite. Phys Rev B, 60, 2827 (1999). http://dx.doi.org/10.1103/PhysRevB.60.2827.
  114. Zhang Y, Franklin NW, Chen RJ, Dai H. Metal coating on suspended carbon nanotubes and its implication to metal-tube interaction. Chem Phys Lett, 331, 35 (2000). http://dx.doi.org/10.1016/s0009-2614(00)01162-3.
  115. Hugo ER, Prasoon J, Awnish KG, Humberto RG, Milton WC, Srinivas AT, Peter CE. Adsorption of ammonia on graphene. Nanotechnology, 20, 245501 (2009). http://dx.doi.org/10.1088/0957-4484/20/24/245501.
  116. Leenaerts O, Partoens B, Peeters FM. Adsorption of small molecules on graphene. Microelectron J, 40, 860 (2009). http://dx.doi. org/10.1016/j.mejo.2008.11.022.

Cited by

  1. Electrochemical performance of N-enriched polyvinylpyrrolidone-based porous carbons vol.22, pp.4, 2014, https://doi.org/10.1007/s13233-014-2058-1
  2. Study on optical interference effect of graphene oxide films on SiO2 and Si3N4 dielectric films vol.40, pp.7, 2014, https://doi.org/10.1007/s11164-014-1657-y
  3. Production of Pt nanoparticles-supported chelating group-modified graphene for direct methanol fuel cells vol.40, pp.7, 2014, https://doi.org/10.1007/s11164-014-1662-1
  4. Preparation and electrochemical analysis of graphene/polyaniline composites prepared by aniline polymerization vol.40, pp.7, 2014, https://doi.org/10.1007/s11164-014-1663-0
  5. Synthesis, characterization, and KOH activation of nanoporous carbon for increasing CO2 adsorption capacity vol.40, pp.7, 2014, https://doi.org/10.1007/s11164-014-1665-y
  6. Effect of nickel on hydrogen storage behaviors of carbon aerogel hybrid vol.16, pp.4, 2015, https://doi.org/10.5714/CL.2015.16.4.281
  7. Fabrication of Poly(lactic acid)/Graphene Oxide Foams with Highly Oriented and Elongated Cell Structure via Unidirectional Foaming Using Supercritical Carbon Dioxide vol.54, pp.2, 2015, https://doi.org/10.1021/ie503434q
  8. Structure and energetics of graphene oxide isomers: ab initio thermodynamic analysis vol.7, pp.40, 2015, https://doi.org/10.1039/C5NR04647E
  9. Mechanical, Thermal, and Electrical Properties of Graphene-Epoxy Nanocomposites—A Review vol.8, pp.8, 2016, https://doi.org/10.3390/polym8080281