DOI QR코드

DOI QR Code

Issues with the electrical characterization of graphene devices

  • Lee, Byoung-Hun (Department of Nanobio Materials and Electronics, School of Material Science and Engineering, Gwangju Institute of Science and Technology) ;
  • Lee, Young-Gon (Department of Nanobio Materials and Electronics, School of Material Science and Engineering, Gwangju Institute of Science and Technology) ;
  • Jung, Uk-Jin (Department of Nanobio Materials and Electronics, School of Material Science and Engineering, Gwangju Institute of Science and Technology) ;
  • Kim, Yong-Hun (Department of Nanobio Materials and Electronics, School of Material Science and Engineering, Gwangju Institute of Science and Technology) ;
  • Hwang, Hyeon-Jun (Department of Nanobio Materials and Electronics, School of Material Science and Engineering, Gwangju Institute of Science and Technology) ;
  • Kim, Jin-Ju (Department of Nanobio Materials and Electronics, School of Material Science and Engineering, Gwangju Institute of Science and Technology) ;
  • Kang, Chang-Goo (Department of Nanobio Materials and Electronics, School of Material Science and Engineering, Gwangju Institute of Science and Technology)
  • 투고 : 2011.08.29
  • 심사 : 2011.12.04
  • 발행 : 2012.01.31

초록

Graphene is an attractive material for device applications, but device characteristics are very unstable because the graphene is very sensitive to environmental factors such as charges nearby the graphene, metal contacts, defects, contaminants and other adsorbates. Since the interactions between graphene and environmental factors affect the electrical characteristics of graphene devices, the interpretation of electrical characteristics as simple as current-voltage curves is non-trivial, despite the common practice of using well known electrical characterization methods that have been used in silicon MOSFET. This paper addresses major obstacles in the electrical characterization of graphene devices and offers countermeasures to improve the accuracy of electrical characterization methods.

키워드

참고문헌

  1. Huard B, Stander N, Sulpizio JA, Goldhaber-Gordon D. Evidence of the role of contacts on the observed electron-hole asymmetry in graphene. Phys Rev B, 78, 121402 (2008). http://dx.doi.org/10.1103/PhysRevB.78.121402.
  2. Wehling TO, Katsnelson MI, Lichtenstein AI. Adsorbates on graphene: impurity states and electron scattering. Chem Phys Lett, 476, 125 (2009). http://dx.doi.org/10.1016/J.cplett.2009.06.005.
  3. Sui Y, Low T, Lundstrom M, Appenzeller J. Signatures of disorder in the minimum conductivity of graphene. Nano Lett, 11, 1319 (2011). http://dx.doi.org/10.1021/nl104399z.
  4. Murali R, Yang Y, Brenner K, Beck T, Meindl JD. Breakdown current density of graphene nanoribbons. Appl Phys Lett, 94, 243114 (2009). http://dx.doi.org/10.1063/1.3147183.
  5. Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 438, 197 (2005). http://dx.doi.org/10.1038/nature04233.
  6. Lin YM, Avouris P. Strong suppression of electrical noise in bilayer graphene nanodevices. Nano Lett, 8, 2119 (2008). http://dx.doi.org/10.1021/nl080241l.
  7. Geim AK, Novoselov KS. The rise of graphene. Nature Mater, 6, 183 (2007). http://dx.doi.org/10.1038/nmat1849.
  8. Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL. Ultrahigh electron mobility in suspended graphene. Solid State Commun, 146, 351 (2008). http://dx.doi.org/10.1016/j.ssc.2008.02.024.
  9. Schwierz F. Graphene transistors. Nature Nanotechnol, 5, 487 (2010). http://dx.doi.org/10.1038/nnano.2010.89.
  10. Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK. The electronic properties of graphene. Rev Mod Phys, 81, 109 (2009). http://dx.doi.org/10.1103/RevModPhys.81.109.
  11. Ohta T, Bostwick A, Seyller T, Horn K, Rotenberg E. Controlling the electronic structure of bilayer graphene. Science, 313, 951 (2006). http://dx.doi.org/10.1126/science.1130681.
  12. Ito J, Nakamura J, Natori A. Semiconducting nature of the oxygenadsorbed graphene sheet. J Appl Phys, 103, 113712 (2008). http://dx.doi.org/10.1063/1.2939270.
  13. Kang CG, Kang JW, Lee SK, Lee SY, Cho CH, Hwang HJ, Lee YG, Heo J, Chung HJ, Yang H, Seo S, Park SJ, Ko KY, Ahn J, Lee BH. Characteristics of CVD graphene nanoribbon formed by a ZnO nanowire hardmask. Nanotechnology, 22, 295201 (2011). http://dx.doi.org/10.1088/0957-4484/22/29/295201.
  14. Lee YG, Kang CG, Jung UJ, Kim JJ, Hwang HJ, Chung HJ, Seo S, Choi R, Lee BH. Fast transient charging at the graphene/ SiO2 interface causing hysteretic device characteristics. Appl Phys Lett, 98, 183508 (2011). http://dx.doi.org/10.1063/1.3588033.
  15. Lohmann T, Von Klitzing K, Smet JH. Four-Terminal magneto-Transport in graphene p-n junctions created by spatially selective doping. Nano Lett, 9, 1973 (2009). http://dx.doi.org/10.1021/nl900203n.
  16. Farmer DB, Roksana GM, Perebeinos V, Lin YM, Tuievski GS, Tsang JC, Avouris P. Chemical doping and electron-hole conduction asymmetry in graphene devices. Nano Lett, 9, 388 (2009). http://dx.doi.org/10.1021/nl803214a.
  17. Parrish KN, Akinwande D. Impact of contact resistance on the transconductance and linearity of graphene transistors. Appl Phys Lett, 98, 183505 (2011). http://dx.doi.org/10.1063/1.3582613.
  18. Huang BC, Zhang M, Wang Y, Woo J. Contact resistance in topgated graphene field-effect transistors. Appl Phys Lett, 99, 032107 (2011). http://dx.doi.org/10.1063/1.3614474.
  19. Xia F, Perebeinos V, Lin YM, Wu Y, Avouris P. The origins and limits of metal-graphene junction resistance. Nature Nanotechnol, 6, 179 (2011). http://dx.doi.org/10.1038/nnano.2011.6.
  20. Stander N, Huard B, Goldhaber-Gordon D. Evidence for Klein tunneling in graphene p-n junctions. Phys Rev Lett, 102, 026807 (2009). http://dx.doi.org/10.1103/PhysRevLett.102.026807.
  21. Xia J, Chen F, Li J, Tao N. Measurement of the quantum capacitance of graphene. Nature Nanotechnol, 4, 505 (2009). http://dx.doi.org/10.1038/nnano.2009.177.
  22. Xu H, Zhang Z, Peng LM. Measurements and microscopic model of quantum capacitance in graphene. Appl Phys Lett, 98, 133122 (2011). http://dx.doi.org/10.1063/1.3574011.
  23. Liao ZM, Han BH, Zhou YB, Yu DP. Hysteresis reversion in graphene field-effect transistors. J Chem Phys, 133, 044703 (2010). http://dx.doi.org/10.1063/1.3460798.
  24. Shi Y, Dong X, Chen P, Wang J, Li LJ. Effective doping of singlelayer graphene from underlying SiO2 substrates. Phys Rev B, 79, 115402 (2009). http://dx.doi.org/10.1103/PhysRevB.79.115402.
  25. Jung I, Dikin D, Park S, Cai W, Mielke SL, Ruoff RS. Effect of water vapor on electrical properties of individual reduced graphene oxide sheets. J Phys Chem C, 112, 20264 (2008). http://dx.doi.org/10.1021/jp807525d.
  26. Wang H, Wu Y, Cong C, Shang J, Yu T. Hysteresis of electronic transport in graphene transistors. ACS Nano, 4, 7221 (2010). http://dx.doi.org/10.1021/nn101950n.
  27. Liu Z, Bol AA, Haensch W. Large-scale graphene transistors with enhanced performance and reliability based on interface engineering by phenylsilane self-assembled monolayers. Nano Lett, 11, 523 (2011). http://dx.doi.org/10.1021/nl1033842.
  28. Lee BH, Young C, Choi R, Sim JH, Bersuker G. Transient charging and relaxation in high-k gate dielectrics and their implications. Jpn J Appl Phys, 44, 2415 (2005). http://dx.doi.org/10.1143/jjap.44.2415.
  29. Bersuker G, Zeitzoff P, Sim JH, Lee BH, Choi R, Brown G, Young CD. Mobility evaluation in transistors with charge-trapping gate dielectrics. Appl Phys Lett, 87, 042905 (2005). http://dx.doi.org/10.1063/1.1995956.
  30. Ng KK, Lynch WT. Analysis of the gate-voltage-dependent series resistance of MOSFET's. IEEE Trans Electr Dev, ED-33, 965 (1986). http://dx.doi.org/10.1109/T-ED.1986.22602.
  31. Hu GJ, Chang C, Chia YT. Gate-voltage-dependent effective channel length and series resistance of LDD MOSFET's. IEEE Trans Electr Dev, ED-34, 2469 (1987). http://dx.doi.org/10.1109/TED.1987.23337.
  32. Sundaram RS, Steiner M, Chiu HY, Engel M, Bol AA, Krupke R, Burghard M, Kern K, Avouris P. The graphene-gold interface and its implications for nanoelectronics. Nano Lett, 11, 3833 (2011). http://dx.doi.org/10.1021/nl201907u.
  33. Ponomarenko LA, Yang R, Mohiuddin TM, Katsnelson MI, Novoselov KS, Morozov SV, Zhukov AA, Schedin F, Hill EW, Geim AK. Effect of a high-$\kappa$ environment on charge carrier mobility in graphene. Phys Rev Lett, 102, 206603 (2009). http://dx.doi.org/10.1103/PhysRevLett.102.206603.
  34. Su LT, Chung JE, Antoniadis DA, Goodson KE, Flik MI. Measurement and modeling of self-heating in SOI nMOSFET's. IEEE Trans Electr Dev, 41, 69 (1994). http://dx.doi.org/10.1109/16.259622.
  35. Hwang EH, Adam S, Sarma SD. Carrier transport in two-dimensional graphene layers. Phys Rev Lett, 98, 186806 (2007). http://dx.doi.org/10.1103/PhysRevLett.98.186806.

피인용 문헌

  1. Triangular-Pulse Measurement for Hysteresis of High-Performance and Flexible Graphene Field-Effect Transistors vol.35, pp.2, 2014, https://doi.org/10.1109/LED.2013.2294828
  2. Characterization and physical modeling of MOS capacitors in epitaxial graphene monolayers and bilayers on 6H-SiC vol.6, pp.8, 2016, https://doi.org/10.1063/1.4961361
  3. Recovery Mechanism of Degraded Black Phosphorus Field-Effect Transistors by 1,2-Ethanedithiol Chemistry and Extended Device Stability vol.14, pp.6, 2017, https://doi.org/10.1002/smll.201703194