

Journal of Information Processing Systems, Vol.8, No.2, June 2012 http://dx.doi.org/10.3745/JIPS.2012.8.2.331

331

TBBench: A Micro-Benchmark Suite for Intel
Threading Building Blocks

Ami Marowka*

Abstract—Task-based programming is becoming the state-of-the-art method of choice
for extracting the desired performance from multi-core chips. It expresses a program in
terms of lightweight logical tasks rather than heavyweight threads.
Intel Threading Building Blocks (TBB) is a task-based parallel programming paradigm for
multi-core processors. The performance gain of this paradigm depends to a great extent
on the efficiency of its parallel constructs. The parallel overheads incurred by parallel
constructs determine the ability for creating large-scale parallel programs, especially in
the case of fine-grain parallelism.
This paper presents a study of TBB parallelization overheads. For this purpose, a TBB
micro-benchmarks suite called TBBench has been developed. We use TBBench to
evaluate the parallelization overheads of TBB on different multi-core machines and
different compilers. We report in detail in this paper on the relative overheads and analyze
the running results.

Keywords—TBB, Micro-Benchmarks, Multi-Core, Parallel Overhead

1. INTRODUCTION

A programmer expects that a parallel programming model will have three major properties:
ease-of-use, high abstraction, and portable performance across a wide range of parallel architec-
tures. The design of a parallel programming model that meets all of these expectations is still out
of reach [2, 10-12, 21, 22, 24, 28]. Still, despite the many obstacles, there has been some pro-
gress in parallel programming that brings us closer to the desired parallel programming model
[12].

Every HPC vendor is looking today for a breakthrough in this area. Over the past two decades,
much effort has been invested in designing new parallel programming languages and models.
For example, UPCRC [28] is a Microsoft-Intel-Academia initiative for finding new ways to
program multi-core computers; Intel Parallel Studio is a new suite of parallel programming tools
for the Microsoft Visual Studio environment [25]; and the Stanford parallel computing platform
2012 [1] from the Stanford Pervasive Parallelism Laboratory aims to make parallel program-
ming practical for the masses. Most of the HPC research community proposals for new parallel
programming paradigms did not attract HPC users because they did not offer reasonable solu-
tions to many of the pitfalls and issues of multi-core programming [14, 15]. An exception is the
Intel Threading Building Blocks (TBB) [17, 27].

Manuscript received July 21, 2011; first revision March 17, 2012; accepted April 9, 2012.
Corresponding Author: Ami Marowka
* Dept. of Computer Science, Bar-Ilan University, Israel (amimar2@yahoo.com)

Copyright ⓒ 2012 KIPS (ISSN 1976-913X)

TBBench: A Micro-Benchmark Suite for Intel Threading Building Blocks

332

Intel Threading Building Blocks (TBB) is a C++ template library that is aimed at developing
parallel applications that run on top of multi-core processors. TBB designers are committed to
making the TBB compiler, the processor, and operating system all independent. The library con-
sists of building blocks (data structures and algorithms) that free a programmer from some com-
plications arising from the use of native threading mechanisms such as threads creation, syn-
chronization, and termination.

TBB abstracts access to the multiple processors by automating the process of data decomposi-
tion to small cache-friendly chunks of data processed by tasks, and then dynamically schedules
the tasks to individual cores in an efficient manner. Tasks are blocks of code that perform a spe-
cific work or function when executed by the TBB runtime library. The motivation for using
tasks rather than threads is the low overhead that is incurred when tasks are created and de-
stroyed. Furthermore, tasks are dynamically assigned to available execution resources by the
runtime library that helps to reduce load imbalance. This approach enables the programmer to
focus on the program logic rather than on ways to use the underlying machine architecture effi-
ciently. The core engine of TBB is the task scheduler, which uses a task stealing mechanism to
balance a parallel workload across available processing cores in order to increase core utilization
and therefore performance and scalability. After a TBB program is initialized, the task scheduler
divides the workload among the threads to balance the load by allowing idle threads to steal
tasks from the queue of busy threads.

The TBB library consists of algorithms (parallel for, parallel reduce, parallel scan, parallel
while, pipeline, and parallel sort). The design of the algorithms is based on C++ generic pro-
gramming and the recursively divisible ranges that are implemented on top of an efficient work-
stealing scheduler. The library was designed for simplicity such that parallelism is mapped to
the underlying machine resources without intervention by the programmer. In addition, the TBB
library provides concurrent containers (concurrent queue, concurrent vector, and concurrent
hash map). The containers are thread-safe and use fine-grained locking for efficiency. The li-
brary also contains concurrent memory allocation, various mutual exclusion mechanisms, and
atomic operations.

However, as multi-core architectures continue to evolve they will require developers to refine
their threading techniques as a core aspect of their solutions rather than as a merely desirable
feature. Overheads associated with operations such as thread creation, synchronization and lock-
ing, threading granularity, scheduling, and process management will become more pronounced
as time goes by, and the necessity of planning for parallel scalability will become more and
more important. This paper makes the following contributions:

• We present the design methodology of the TBBench suite and show how to use its micro-

benchmarks.
• We study the relative parallel overheads of TBB constructs on multi-core machines.
• We compare the parallel overheads of TBB on different multi-core architectures and on two

different compilers, the Intel compiler and the Microsoft Visual Studio C++ 2008.
• We compare the parallel overheads of TBB and OpenMP on different multi-core machines.

Overall, the paper provides valuable insights that can help TBB users create more scalable

and efficient parallel algorithms and applications. The rest of this paper is organized as follows:
In Section 2, we introduce the design of TBBench and its components. Section 3 presents an in-

Ami Marowka

333

depth analysis of the running results of TBB micro-benchmarks on different multi-core ma-
chines and compilers. In Section 4 we present related work, and Section 5 concludes the paper.

2. TBBENCH: A TBB MICRO-BENCHMARKS SUITE
TBBench is a suite of core benchmarks for measuring the overheads associated with the exe-

cution of TBB parallel constructs for synchronization, scheduling, and work-sharing. The design
of TBBench follows the design concepts of the OpenMP EPCC micro-benchmarks suite.

The approach to measuring the overhead associated with a parallel construct is to compare the
running time of a region of code running in parallel on P cores (Tp) to the running time of the
same region of code running sequentially (Ts). The calculated overhead is given by taking the
difference Tp-Ts/P. For example, by measuring the overhead associated with the TBB paral-
lel_for construct, TBBench measures the time it takes to run the following region of code (Tp):

for (j =0; j<innerreps; j++){
parallel_for (blocked_range<int> (0, nthreads, 1), TBB_parallelforBody ());}

where TBB_parallelforBody () is the following class:

class TBB_parallelforBody {
public :
TBB_parallelforBody () {}
/ / ! main loop
void operator () (const blocked_range<int> & range) const {
for (int i=range.begin () ; i !=range.end();++ i) {
delay (delaylengh) ;
}}}

and then measuring the reference time (Ts), the time it takes to run the following loop on a

single thread:

for (j =0; j<innerreps ; j++){
delay (delaylengh) ;
}

And finally, subtracting the reference time divided by the number of cores (Ts/P) from Tp.

Then, the result is divided by the number of iterations innerreps to get the overhead time per
iteration.

TBBench is designed to pay attention to measuring statistically and reproducible results. The
delaylength of the reference routine chosen is in the same order of magnitude as the parallel
construct under evaluation but is large enough to guarantee that idle threads will start to steal
tasks from busy threads to create parallel processing; the number of loop iterations innerreps
chosen is larger than the clock resolution; and each running result reported here is an average of
20 different runs of 50 measurements each.

The micro-benchmark for measuring the overhead associated with the TBB parallel_reduce
construct measures the time to run the following region of code:

TBBench: A Micro-Benchmark Suite for Intel Threading Building Blocks

334

Paralle_reduceBody b
for (j =0; j<innereps j++){
parallel_redue (blocked_range<int >(1 ,3 ,1) , b) ;
}

where parallel_reduceBody is the following structure:

struct parallel_reduceBody {
int aaaa ;
/ / ! Constructor set aaaa to 0
Parallel_reduceBody () : aaaa (0) {}
/ / ! Splitting constructor
Parallel_reduceBody (parallel_reduceBody& 0ther , split) : aaaa (0) {}
/ / ! Join point
void join (parallel_reduceBody &s) {
aaaa = aaaa + s . aaaa ;
}
void operator () (const blocked_range<int> &r) {
for (int k = r.begin() ; k < r.end () ; ++k)
aaaa = aaaa + 1 ;
}}

Next, we demonstrate how TBBench measures the overhead incurred by TBB mutual exclu-

sion mechanisms. The code below is the micro-benchmark for measuring the overhead of
Spin_mutex. Queuing_mutex and Mutex mutual exclusion mechanisms have similar codes. The
main routine invokes the call:

TBB_lock<spin_mutex>() ;

Where the TBB_lock is the following template that calls to the TBB parallel_for with the

class parameter TBB_lockBody:

template<class M>
void TBB_lock ()
{
M mutex ;
Parallel_for (blocked_range<int >(0 , nthreads , 1) , TBB_lockBody<M>(mutex)) ;
}

The definition of TBB_lockBody is shown below and contains repeated calls to the

TBBlock.acquire and the TBBlock.release pair:

template<typename M>
class TBB_lockBody {
M &mutex ;
public:
TBB_lockBody (M &m) : mutex(m) {}
/ / ! main loop
void operator () (const blocked_range<int>& range) const {
 typename M: : scoped_lock TBBlock ;
 for (int i=range.begin() ; i !=range.end();++ i) {
 for (int j =0; j<innerreps / nthreads ; j++){
 TBBlock.acquire (mutex) ;
 delay (delaylength) ;
 TBBlock.release () ;
}}}}

Ami Marowka

335

Now, we will illustrate how TBBench benchmarks an ATOMIC mechanism. TBBench calls
and measures the time of the following region of code:

atomic<int> aaaa ; aaaa=0;
parallel_for (blocked_range<int >(0 , nthreads , 1) , TBB_atomicBody (aaaa)) ;

Where TBB_atomicBody is the following class:

class TBB_atomicBody {
atomic<int> &paaaa ;
public:
TBB_atomicBody (atomic<int> &m) : paaaa (m) {}
/ / ! main loop
void operator () (const blocked_range<int>& range) const {
 for (int i=range.begin() ; i !=range.end();++ i) {
 for (int j =0; j<innerreps / nthreads ; j++){
 paaaa.fetch_and_add (1) ;
}}}}

Finally, the code for measuring the scheduling overhead is presented. For this purpose

TBBench invokes and measures the time of the following region of code:

parallel_for (blocked_range<int >(0 , itersperthr * nthreads , cksz) ,
 TBB_schedBody ()) ;

The variables itersperthr, nthreads, and cksz refer to the number-of-iterations per thread, the

number-of-threads, and the chunk-size respectively. The TBB_schedBody is the following class:

class TBB_schedBody {
public:
TBB_schedBody () {}
/ / ! main loop
void operator () (const blocked_range<int>& range) const {
 for (int i=range.begin() ; i !=range.end();++ i) {
 for (int j =0; j<innerreps ; j++){
 delay (delaylength) ; }}}}

The schedule options simple_partitioner, which recursively splits a range until it is no longer

divisible, and auto_partitioner, which guides splitting decisions based on the work-stealing be-
havior of the task scheduler, are also measured by calling to the following codes respectively:

parallel_for (blocked_range<int >(0 , itersperthr*nthreads) , TBB_schedBody () , sim-
ple_partitioner ()) ;

parallel_for (blocked_range<int >(0 , itersperthr*nthreads) , TBB_schedBody () ,
auto_partitioner ()) ;

TBBench: A Micro-Benchmark Suite for Intel Threading Building Blocks

336

3. EXPERIMENTAL RESULTS
This section describes and analyzes the benchmarks performed to evaluate the parallelization

overheads of different TBB parallel constructs by using TBBench. The analysis of the running
results examines the parallel overheads from different angles. We compare the parallel over-
heads of different TBB constructs on various multi-core processor architectures.

The list of the tested platforms is shown in Table 1. On the software side we used TBB ver-
sions 2.2 under the Intel C++ compiler 11.0 for Windows and Microsoft Visual Studio C++
2008. Both compilers were run on top of the XP operating system. All of the measurements
shown in the figures below are in Kilo-Clock-Cycles for providing a better comparison between
different machine architectures.

TBBench cannot be considered a “black box” benchmarking tool. In other words, this tool
depends on the settings and the tunings of a few parameters that affect the accuracy and the re-
producibility of the measurements. There are external parameters such as the number of threads
and compiler options (optimization level, runtime library type, etc.) and there are internal pa-
rameters such as delaylength, innerreps, and itersperthr (See section 3). Moreover, attention has
to be paid to the fluctuations of the measurements in order to achieve statistically stable and
reproducible results. There are many reasons for getting different measurements from run to run
such as the non-deterministic behavior of the scheduler, different allocations of variables in the
memory space, the accuracy of time measurements of the clock routines, unpredictable context
switches, initialization overheads, and the inconsistency of the cache memories' behavior. Simi-
lar problems were reported in [3, 4].

One important lesson that we learned from this work is that analysis of the measurement re-
sults sometimes yield unexpected behaviors. Some of these behaviors can be explained by using
profiling and performance tools that have access to the hardware counters. Unfortunately, there
are cases that cannot be explained without knowing the specific implementation of the tested
software and only educated guesses can be given to explain the unexpected results [16].

The default compiler option used was /O2 (maximize speed). The internal parameters of
TBBench were set to delaylength = 500 (the granularity of loop body reference), innerreps =
10000 (the number of loop iterations) and itersperthr =128 (the number of iterations per thread
for the scheduling measurements). The benchmarking results reported here are averages of 20
runs of 50 measurements each for statistical stability. Any measurement that exceeded the
threshold of three times the standard-deviation was ignored.

3.1 Work-sharing benchmarks

Fig. 1 plots the bar charts of the parallel overheads incurred by TBB work-sharing constructs.
The measurements shown are of Parallel_For and Parallel_Reduce for two threads in the Intel

Table 1. The tested multi-core machines

Platform No. of Cores Clock(GHz) L1 Cache L2 Cache L3 Cache Memory
Intel Pentium D 820 2 2.8 2x16KB 2x1MB - 1GB

Intel Core 2 Duo T8100 2 2.1 2x32KB 1x3MB - 1GB
Intel Core 2 Quad Q6600 4 2.4 4x32KB 2x2MB - 1GB

AMD Athlon X2 7750 2 2.7 2x64KB 1x1MB - 1GB
AMD Phenom X4 9750 4 2.4 4x64KB 4x512KB 1x2MB 1GB

Ami Marowka

337

Core 2 Duo machine. Since TBB designers are committed to making the TBB compiler, proces-
sor, and operating system all independent we examined the results for two compiler options (/O2
for maximize speed and /Od for optimization disabled) and two different compilers (Intel and
Microsoft).

First, it can be observed from Fig. 1 that optimization can improve performance by up to 23%
in the case of Parallel_for and the Intel compiler. Second, the Intel compiler achieves better
performance (up to 4% for the /O2 case) for both work-sharing constructs, while the Microsoft
compiler achieves better performance (up to 5%) when the optimization is disabled. These ob-
servations suggest that although TBB work-sharing construct implementations were not de-
signed for a specific compiler, different compilers can exhibit different performances and com-
piler optimizations can reduce overheads.

Fig. 2 plots the bar charts of the parallel overheads incurred by TBB work-sharing constructs
on five different multi-core architectures and makes a comparison between TBB and OpenMP
parallel overheads. The OpenMP parallel overheads were obtained by using the EPCC micro-
benchmark suite. The results shown in Fig. 2 were obtained by using the Intel compiler with its
maximize speed (/O2) compiler option enabled and by using two threads.

It can be observed that OpenMP outperforms TBB for any kind of multi-core architecture.
OpenMP achieves an up to eight times better performance in the case of Parallel_For on the
oldest architecture in Fig. 1 (Pentium D) and performs up to three times better in the case of
Parallel_Reduce on the newest architecture (Phenom X4). These findings suggest that OpenMP
implementations of these work-sharing constructs are more efficient because OpenMP is not a
compiler independent programming model and thus can be better optimized by the compiler.

Fig. 2 illustrates the impact of different multi-core architectures on TBB parallel overheads. It
can be observed that the newest architectures significantly reduce the parallel overheads as com-
pared to former architectures. This may largely be due to improvements in the underlying hard-
ware, especially in the memory subsystems. Note that TBB parallel overheads are more influ-
enced by the underlying architecture as compared to OpenMP. This is because TBB is a com-
piler independent library and thus future improvements in the underlying architectures can sig-
nificantly improve the performance of TBB applications.

4.67 4.58

6.05 5.66

5.28 4.64

5.88 5.56

0

1

2

3

4

5

6

7

Parallel_For Parallel_Reduce

Ki
lo
 C
lo
ck
 C

yc
le
s

Intel (/O2) Intel (/Od) MS (/O2) MS (/Od)

Fig. 1. Parallel overheads of TBB Parallel_For and Parallel_Reduce operations for 2 threads in

Core 2 Duo, the T8100, 2.1 GHz machine, and for Intel and Microsoft compilers with their
maximize speed (/O2) and optimization disabled (/Od) compiler options

TBBench: A Micro-Benchmark Suite for Intel Threading Building Blocks

338

3.2 Mutual exclusions benchmarks
Fig. 3 plots the bar charts of the overheads incurred by TBB mutual exclusion mechanisms.

The measurements shown are Mutex, Queuing Mutex, Spin Mutex and Atomic for two threads on
the Intel Core 2 Duo machine. Again, since TBB designers are committed to making the TBB
compiler, processor, and operating system all independent we examined the results for two
compiler options (/O2 for maximize speed and /Od for optimization disabled) and two different
compilers (Intel and Microsoft).

A Mutex in TBB is a global variable that multiple tasks can access. Protecting a Mutex is done
by locking mechanisms. Spin_Mutex causes a task to spin in user space while it is waiting and
Mutex causes a task to sleep. For short waits, spinning in user space is fastest because putting a
task to sleep takes cycles. Queuing_Mutex, like Spin_Mutex, causes a task to spin but each task
gets its turn based on a First-In First-Out (FIFO) policy.

The principal observation from these results is that Mutex and Queuing_Mutex incur substan-
tial overheads in comparison to Spin_Mutex. This appears to be largely due to the cost of man-
aging these mutexes. As expected, the Spin_Mutex presents the lowest overhead and it is most

Fig. 2. Parallel overheads of Parallel_For and Parallel_Reduce operations of OpenMP vs. TBB for 2

threads in different multi-core machines, and for the Intel compiler with the maximize speed
(/O2) compiler option

Fig. 3. Parallel overheads of TBB mutual exclusions operations Mutex, Queuing_Mutex, Spin_

Mutex, and Atomic operations for 2 threads on Core 2 Duo, T8100, the 2.1 GHz machine,
and for Intel and Microsoft compilers with maximize speed (/O2) and optimization disabled
(/Od) compiler options

Ami Marowka

339

likely its simple implementation that makes Spin_Mutex very fast in lightly contended situations
such as ours, where the benchmarks are executed with only two threads. Therefore, we omit the
discussion on scalability with respect to the number of cores in this article because it is useless
to do such an analysis when the machines have only two or four cores. Fig. 3 shows that the
Intel compiler achieves better performance than the Microsoft compiler for the three mutex
mechanisms (up to three times better for the optimized case of Spin_Mutex), while the Microsoft
compiler achieves better performance (up to 6% better for the optimized case) as compared to
the Intel compiler for the Atomic operation. The TBB Atomic operation achieves a low and very
stable overhead, as is expected from an operation that just call for a low level operation such as
fetch_and_add. Simulations show that as the number of worker threads is increased, atomic op-
erations can become a significant source of performance degradation when a relatively large
number of tasks are created [5]. Fig. 4 compares the parallel overheads of OpenMP and TBB
with respect to the Lock_Unlock and Atomic operations on five multi-core architectures with an
Intel compiler. The Lock_Unlock comparison in Fig. 4 refers to the Lock and Unlock routines of

Fig. 4. Parallel overheads of Lock_Unlock and Atomic operations of OpenMP vs. TBB for 2

threads on different multi-core machines, and for an Intel compiler with the maximize
speed (/O2) compiler option

Fig. 5. Parallel overheads of TBB Mutex and Queuing_Mutex operations for 2 threads on different

multi-core machines, and for an Intel compiler with the maximize speed (/O2) compiler
option

TBBench: A Micro-Benchmark Suite for Intel Threading Building Blocks

340

OpenMP and to the Spin_Mutex of TBB. The OpenMP Lock_Unlock and TBB Spin_Mutex have
the same semantic. It can be observed that TBB appears to achieve less overhead than OpenMP
on four of five architectures. The exception is Pentium D, the oldest architecture on the list,
which exhibits relative high overheads in all the cases. This is most likely due to the inefficient
implementations of OpenMP mutual exclusion mechanisms, which suggest that an Intel com-
piler can significantly improve the OpenMP implementations of these mechanisms. Fig. 5 de-
picts the parallel overheads of TBB Mutex and Queuing_Mutex on the five tested architectures
with an Intel compiler (with /O2 compiler option enabled) and multi-core machines with two
cores and two threads. Note that these two mutexes are very expensive for all the architectures
as compared to Spin_Mutex and thus it is recommended to use them only when it is necessary.

3.3 Scheduling benchmarks

Parallel overheads for different chunk sizes of TBB schedules are given in Fig. 6. The running
results shown in Fig. 6 were obtained by running TBBench on an Intel Core 2 Duo machine with
two threads and two compilers (Intel and Microsoft) for 1, 2, 4, 8, 16, 32, 64, and 128 chunk
sizes, and for the scheduling options auto_partitioner and simple_partitioner.

First, it can be observed that TBB consumes less overhead (up to 2.25 times less for a chunk
size of 64) with the Intel compiler. However, there is one exception where the Microsoft com-
piler achieves better performance (for a chunk size of 2) but the reason why is not clear. More-
over, the Simple option of the TBB scheduler outperforms any manual setting of a chunk size in
both compilers. Simple refers to TBB’s simple_partitioner option that recursively splits a range
until it is no longer divisible and Auto refers to TBB’s auto_partitioner option that guides split-
ting decisions based on the work-stealing behavior of the task scheduler. Fig. 7 presents the be-
havior of the scheduling options simple_partitioner and auto_partitioner for our tested plat-
forms. Again, it can be observed that the oldest architecture (Pentium D) obtained a relatively
high overhead as compared to the newest architectures.

Fig. 8 plots the bar charts of the scheduling overheads incurred by TBB vs. OpenMP (static)

Fig. 6. Scheduling overheads of TBB for the Intel compiler vs. the Microsoft compiler for 2 threads

on core 2 Duo, T8100, and the 2.1 GHz machine with the maximize speed (/O2) compiler
option

Ami Marowka

341

for two threads on the Intel Core 2 Duo machine and the Intel compiler, with /O2 option enabled.
We chose to compare TBB against the static schedule of OpenMP because it is usually the most
efficient choice [13]. It can be observed from Fig. 8 that TBB outperforms OpenMP (approxi-
mately two times better). Moreover, the simple_partitioner and auto_partitioner TBB scheduler
options exhibit a better performance than any OpenMP manual setting. This observation sug-
gests that the recursive-based TBB scheduler is more efficient than the static scheduler of
OpenMP.

4. RELATED WORK
The EPCC micro-benchmarks for OpenMP were introduced by Bull in [3]. In his introduction,

the author explains the design methodology of the benchmarks and then offers an evaluation of
the synchronization and loop scheduling overheads incurred by OpenMP on three different plat-

Fig. 7. Scheduling overheads of TBB Simple_Partitioner and Auto_Partitioner options for 2 threads

on different multi-core machines, and for Intel compiler with maximize speed (/O2) compiler
option

Fig. 8. Scheduling overheads of OpenMP(static) vs.TBB for 2 threads on Core 2 Duo,T8100, 2.1

GHz machine, and for an Intel Compiler with the maximize speed (/O2) compiler option

TBBench: A Micro-Benchmark Suite for Intel Threading Building Blocks

342

forms (SGI Origin 2000, SUN HPC 3500 and Compaq Alpha server). The author emphasizes
that particular attention was paid to derive statistically stable and reproducible results. However,
the author's discussion on the benchmark results does not mention whether the goals of statisti-
cal stability and reproducibility were achieved. The measurements were conducted while the
number of iterations per thread was fixed to 1,024 and the granularity of the loop body was
tuned to approximately 100 cycles. Moreover, each overhead measurement was repeated 50
times per run for 20 runs because of the variability of the measurements from run to run. The
reasons for the high fluctuations in the measurements are not clear to the author who surmises
that it happens due to alterations of the memory locations of the synchronization variables from
run to run. An analysis of the results leaves the reader with more doubts about the ability to
measure accurate results. For example, the measurements of the LOCK/UNLOCK functions and
DYNAMIC loop scheduling were not obtained due to frequent deadlocks. Moreover, the per-
formance of a SINGLE directive on the Sun machine showed less overhead than a BARRIER
directive, although a SINGLE directive contains an implicit BARRIER operation.

In [4] Bull and O’Neill extensions are presented to the EPCC micro-benchmarks for OpenMP
version 2.0 that measures the overhead of WORKSHARE, PARALLEL WORKSHARE direc-
tives, PRIVATE, FIRSTPRIVATE, and COPYIN clauses. The new extensions were bench-
marked on Sun HPC 6500 and SGI Origin 3000 machines. The authors explain that there is a
conflict between increasing the size of the WORKSHARE array (and thus spending less time in
the directive) and decreasing the size of the array and then these arrays will be vulnerable to
false-sharing situations. This conflict demonstrates the difficulties of producing accurate over-
head measurements.

Contreras and Martonosi studied the basic parallelism management costs of the TBB runtime
Library [5]. On the hardware side, their testing platform was a quad-core machine for measuring
performance on 1-4 real cores and simulations for studying the overheads on 4-32 virtual cores.
On the software side, they used four micro-applications of the PARSEC benchmark suite
(Fluidanimate, Swaptions, Blackscholes, and Streamcluster) that were ported to TBB, and four
kernel-benchmarks (Bitcounter, Matmult, LU and Treeadd). In measuring the basic operations of
the TBB runtime library they focused on five common operations: Spawn, Get_task, Steal, Ac-
quire_queue, and Wait_for_all.

Analysis of the benchmarking results reveals the following findings: synchronization over-
heads within TBB have a significant impact on parallelism performance; the runtime library
contributes up to 47% of the total per-core execution time on a 32-core system (due to synchro-
nization overhead within the TBB scheduler) and hinders performance scalability; the random
task-stealing mechanism becomes less effective as application heterogeneity and core counts
increase; and a queue occupancy-based stealing policy can improve the performance of task
stealing by up to 17%.

The work of Contreras and Martonosi provides important findings for programmers and TBB
designers. However, important information is missing regarding their measurements for provid-
ing better evaluation of their findings and observations. The authors did not report how much
attention was paid to deriving statistically stable and reproducible results. Moreover, the results
show significant differences between the simulation pattern results and hardware (non-
simulation) pattern results. It is not clear whether the differences are due the differences of the
tested architectures or to the software implementations and thus creates some doubts about the
accuracy of the measurements and their ability to assess the scalability of TBB on manycore

Ami Marowka

343

processors.
Sphinx is an integrated parallel micro-benchmark suite for evaluating the performance of MPI,

Pthreads, and OpenMP programming models [26]. Sphinx-OpenMP uses similar methodology
measurements to those used in the EPCC micro-benchmark suite. Sphinx measures several tim-
ings and outputs for their arithmetic means for a given set of parameters for the action. The tim-
ings are stopped when the standard deviation of the repetitions is less than a user-defined
threshold, given that a minimum number of repetitions have been measured. Since this cut-off
may never be achieved, Sphinx guarantees test termination through a user-specified maximum
number of repetitions.

OmpP [6-8] is a Linux-based OpenMP profiler. OmpP presents the profiling results in a text-
based manner but gives the user a fast user-friendly report about hotspots in the tested applica-
tion. OmpP supports the measurement of hardware performance counters by using the PAPI
library where HWC events are selected via environment-variable settings. The analysis report
categorizes the overhead into four types: imbalance, synchronization, limited parallelism, and
thread management. The detailed analysis helps the programmer detect common bottlenecks that
inhibit achieving the desired scalability, and discovers inefficiencies that are subjects for further
in-depth investigation.

Wang and Xu [23] studied the scalability of the multiple-pattern matching algorithm known
as the Aho-Corasick-Boyer-Moore Algorithm on the Intel Core 2 Duo processor 6300, 1.86
GHz with 1GB main memory, and on Windows XP for different input sizes. This work com-
pares the performance of the Windows Threading API with the Intel Threading Building Blocks.
The authors found that the average scalability achieved by TBB is 1.655 as compared to 1.549
of Win32. The authors explain that TBB achieves better performance because it specifies tasks
instead of threads. A task can be dynamically assigned to a thread. Intel TBB selects the best
thread for a task by using the task scheduler. If one thread runs faster, it is assigned to perform
more tasks. With the Win32 Threading Library, however, a thread is assigned to a fixed task and
cannot be reassigned to other tasks even if it is idle.

Robison et al. [20] studied two different optimization strategies that aim to improve the per-
formance of the work-stealing task scheduler of TBB. The first optimization automatically tunes
the grain size based on inspection of the stealing behavior. The second optimization improves
cache affinity by biased stealing. For testing the impact of the grain size on the performance, the
authors used Pi, a simple numeric integration benchmark that computes π. The results show that
OpenMP static achieves the best speedup as compared to all OpenMP and TBB scheduling
strategies, while the TBB affinity_partitione achieves the best speedup as compared to other
TBB strategies. The cache affinity benchmark used two programs: Sesmic, which is a program
that simulates 2D wave propagation and Cholesky, which is a program that decomposes a dense
symmetric square array A into the lower triangular matrix L such that A = LxLT . Only OpenMP
static scheduling and TBB affinity_partitioner gave good results for more than two threads.
OpenMP’s static scheduling did the best.

Kegel et al. [18] used different OpenMP and TBB implementations of a block-iterative algo-
rithm for 3D image reconstruction (ListMode Ordered Subset Expectation Maximization) for
comparison between OpenMP and TBB with respect to programming effort, programming style,
and performance gain. The authors studied five implementations (two OpenMP and three TBB)
that differed in the locking mechanisms that they used for synchronization. One of the OpenMP
implementations used the atomic mutual exclusion mechanism while the second one used the

TBBench: A Micro-Benchmark Suite for Intel Threading Building Blocks

344

critical mechanism. The three TBB implementations use mutex, queuing mutex, and spin mutex
mechanisms respectively.

The authors found that OpenMP offers a more simple and easy way to parallelize existing se-
quential code as compared to TBB, which demands for the redesign and rewriting of the sequen-
tial code and is thus more appropriate for building parallel programs from scratch. Moreover,
although the two programming paradigms support high-abstraction APIs, OpenMP outperforms
TBB while achieving better scalability due to more efficient locking mechanisms.

Podobas et al. [19] studied the performance results of five applications (FFT, NQueens, Mul-
tisort SparseLU, and Strassen) with six implementations of task-parallel programming models
(four implementations of OpenMP, Cilk++ and Wool). The OpenMP implementations used four
different compilers (GCC, Intel, Sun, and Mercurium). On the low-level, they studied the costs
of task-creation and task-stealing.

The authors found that Wool and Cilk++ achieve low overheads in task-spawning and task-
stealing as compared to OpenMP. Among the four implementations of OpenMP, the Intel com-
piler exhibited the lowest overheads. However, they measured relatively high overheads with
respect to the parallel constructs of the tested applications. Even so, for coarse-grained tasks all
the applications achieved high speedups. The authors said that most of their findings are still not
clear and need further investigation.

Hower and Jackson [9] offer a C++ library called TaskMan that realizes the task-based pro-
gramming paradigm. The library makes use of futures to introduce a call/return API that is usu-
ally found in imperative languages. The primary designing goals of TaskMan are simplicity and
programmability. A performance study shows that TaskMan does not achieve the performance
level of TBB and Cilk++ but has the potential to close the gap while delivering a lightweight
and intuitive API.

5. CONCLUSIONS
The course of change in the hardware industry is clear - the primary means of evolution for

processors in the foreseeable future is through increasingly large numbers of execution cores per
processor package. Understanding their performance characteristics is essential for designing
scalable and efficient applications. In this paper, we introduced TBBench, a micro-benchmark
suite for TBB that we used to measure the parallel overhead costs of TBB parallel constructs.
The benchmarks were conducted on five multi-core generations with two different compilers.

The benchmarking results show that the Intel compiler usually achieves better performance as
compared to the Microsoft compiler, while the /O2 compiler option for optimized speed im-
proves the performance even further. Moreover, the implementations of the OpenMP work-
sharing constructs of the Intel compiler are efficient and outperform the equivalent TBB con-
structs. On the other hand, TBB mutual exclusion mechanisms exhibit less overhead in compari-
son to their equivalent OpenMP constructs. The scheduling benchmarks show that TBB
achieves better performance as compared to OpenMP due to its sophisticated scheduler while
the TBB schedule option simple_partitioner exhibits the best performance. The benchmarks
were conducted on five different machine architectures and showed that improvements of the
memory subsystems lead to better utilization of the hardware resources and reduce parallel
overheads.

Ami Marowka

345

APPENDIX
TBBench micro-benchmark suite can be downloaded from:
http://amimarowka.weebly.com/tbbench.html

The version 1.0 of the benchmark suite is a self-contained C/C++ file.
TBB is an open-source package that can be downloaded from:
http://threadingbuildingblocks.org/

There are a few parameters that must be set:
• MHz - the CPU rate in Mega Hertz.
• Innerreps - the number of loop iterations. This is chosen to be larger than the clock resolu-

tion.
• Delaylength - the delay duration of the reference routine. It is chosen to be in the same or-

der of magnitude as the parallel construct under evaluation but it is large enough to guaran-
tee that idle threads will start to steal tasks from busy threads for creating parallel process-
ing.

• Itersperthr - number-of-iterations per thread. (for the scheduling benchmark)
• CKSZ - chunk-size. (for the scheduling benchmark)

REFERENCES
[1] A. Aiken et al., “Towards Pervasive Parallelism”. Presentation of Pervasive Parallelism Laboratory

Stanford University, http://ppl.stanford.edu/wiki/index.php/Pervasive_Parallelism_Laboratory.
[2] K. Asanovic et al., “The landscape of parallel computing research: A view from Berkeley”. Univer-

sity of California at Berkeley, Technical Report No. UCB/EECS-2006-183, December, 18, 2006.
 http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html
[3] M. Bull, “Measuring Synchronization and Scheduling Overheads in OpenMP”, Proceeding of First

European Workshop on OpenMP (EWOMP ’99) Lund, Sweden, October, 1999.
[4] M. Bull and D. O’Neill, “micro-benchmark Suite for OpenMP 2.0”, Proceedings of the Third Euro-

pean Workshop on OpenMP (EWOMP’01), Barcelona, Spain, September, 2001, pp.41-48.
[5] G. Contreras and M. Martonosi, “Characterizing and Improving the Performance of Intel Threading

Building Blocks”, IEEE Proceeding of International Symposium on Workload Characterization, 2008,
pp.57-66.

[6] K. Fuerlinger and M. Gerndt, “ompP: A profiling tool for OpenMP”, In Proceedings of the First In-
ternational Workshop on OpenMP (IWOMP 2005), Eugene, Oregon, USA, May, 2005.

[7] K. Fuerlinger, “The OpenMP Profiler ompP: User Guide and Manual”, May, 2008.
 http://www.cs.utk.edu/ karl/research/ompp/usage.html
[8] K. Fuerlinger and D. Skinner, “Performance Profiling for OpenMP Tasks”, In Proceedings of the 5th

International Workshop on OpenMP (IWOMP 2009). Dresden, Germany, June, 2009.
[9] D. Hower and S. Jackson, “TaskMan: Simple Task-Parallel Programming”,
 http://pages.cs.wisc.edu/ david/courses/cs758/Fall2009/includes/Projects/JacksonHower-slides.pdf
[10] B. Nicols et al., “Pthreads Programming, A POSIX Standard for Better Multiprocessing”, O‘reilly,

September 1996.
[11] A. Marowka, “Parallel Computing on Any Desktop”, Communication of ACM, Vol.50, Issue 9, Sep-

tember, 2007, pp.74-78.
[12] A. Marowka, “Execution Model of Three Parallel Languages: OpenMP, UPC and CAF”. Scientific

Programming, Vol.13(2), October, 2005, pp.127-135.

TBBench: A Micro-Benchmark Suite for Intel Threading Building Blocks

346

[13] A. Marowka, “Performance of OpenMP Benchmarks on Multi-core Processors”, 8th International
Conference on Algorithms and Architectures for Parallel Processing(ICA3PP), Agia Napa, Cyprus,
June, 9-11, 2008, LNCS proceeding Vol.5022, pp.208-219.

[14] A. Marowka, “Pitfalls and Issues of Manycore Programming”, ADVANCES IN COMPUTERS,
Volume 79, 2010, Elsevier.

[15] A. Marowka, “Back to Thin-Core Massively Parallel Processors”, IEEE Computer, Vol.44, No.12,
December, 2011, pp.49-54.

[16] A. Marowka, “On Performance Analysis of a Multithreaded Application Parallelized by Different
Programming Models using Intel VTune”, Malyshkin, V. (ed.) Eleventh International Conference on
Parallel Computing Technologies (PaCT). LNCS 6873, Springer (2011), pp.317-331.

[17] J. Reinders, “Intel Threading Building Blocks, Outfitting C++ for Multi-core Processor Parallelism”,
O‘Reilly, 2007.

[18] P. Kegel, M. Schellmann, S. Gorlatch, S. (2009): “Using OpenMP vs. Threading Building Blocks for
Medical Imaging on Multi-Cores”. In Sips, H. J., Epema, D. H. J., Lin H. (Hrsg.): Euro-Par 2009 Par-
allel Processing, 15th International Euro-Par Conference, Delft, The Netherlands, August, 25-28,
2009, Seiten 654-665.

[19] A. Podobas, M. Brorsson, and K. Faxan, “A Comparison of some recent Task-based Parallel Pro-
gramming Models”, in the proceeding of the Third Workshop on Programmability Issues for Multi-
Core Computers (MULTIPROG), Pisa, Italy, January, 24, 2010.

[20] A. Robison, M. Voss and A. Kukanov, “Optimization via Reflection on Work Stealing in TBB”, In
Proceeding of IEEE International Symposium on Parallel and Distributed Processing, IPDPS, 2008,
pp.1-8.

[21] H. Sutter, “The free lunch is over: A fundamental turn toward concurrency in software”. Dr. Dobb’s
Journal, 30(3), March, 2005.

[22] H. Sutter and J. Larus, “Software and the concurrency revolution”. ACM Queue 3, 7 (September,
2005), 54-62.

[23] L. Wang and X. Xu, “Parallel Software Development with Intel Threading Analysis Tools”, Intel
Technology Journal, Vol.11, Issue 04, 2007, pp.287-297.

[24] “High Productivity Computing Systems”, http://www.highproductivity.org/
[25] “Intel Parallel Studio”, http://www.intel.com/cd/software/products/asmo-na/eng/399359.htm
[26] “Sphinx Micro-benchmark Suite”, http://www.llnl.gov/CASC/RTS Report/sphinx.html
[27] TBB Web Site: http://www.threadingbuildingblocks.org/
[28] UPCRC: http://www.upcrc.illinois.edu/index.html

Ami Marowka
He is an adjunct Assistant Professor at the Computer Science Department of
Bar-Ilan University in Israel. His research interests include the portability of HPC
applications, parallel computing, the use of advanced-computer architectures,
programming methodology, and tools for parallel computers. He received a PhD
in Computer Science from the School of Computer Science and Engineering at
the Hebrew University in Jerusalem, Israel.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /!BM-dolhdip1
 /!BM-gaulr
 /!BM-joyakr
 /AGA-Arabesque
 /AGA-ArabesqueDesktop
 /AgencyFB-Bold
 /AgencyFB-Reg
 /AharoniBold
 /ahn2006-B
 /ahn2006-L
 /ahn2006-M
 /AkhbarMT
 /AkhbarMT-Bold
 /Albertus-ExtraBold
 /Albertus-Medium
 /AlbertusMT
 /AlbertusMT-Italic
 /AlbertusMT-Light
 /Algerian
 /AmericanGaramondBT-Roman
 /AmiR-HM
 /AngsanaNew
 /AngsanaNew-Bold
 /AngsanaNew-BoldItalic
 /AngsanaNew-Italic
 /AngsanaUPC
 /AngsanaUPC-Bold
 /AngsanaUPC-BoldItalic
 /AngsanaUPC-Italic
 /ArborWin
 /ArialBackslanted
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /Astro2KT
 /AvantGarde-Book
 /AvantGarde-BookOblique
 /AvantGarde-Demi
 /AvantGarde-DemiOblique
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /AvantGardeITCbyBT-Medium
 /AvantGardeITCbyBT-MediumOblique
 /AvQest
 /BaskOldFace
 /Batang
 /BatangChe
 /BatangOldHangulJamo
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BirdB
 /BirdL
 /BirdM
 /BlackadderITC-Regular
 /BlackChancery
 /BM-dolchulip1
 /BM-gaulr
 /BM-joyakr
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /Bookman-Demi
 /Bookman-DemiItalic
 /Bookman-Light
 /Bookman-LightItalic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrowalliaNew
 /BrowalliaNew-Bold
 /BrowalliaNew-BoldItalic
 /BrowalliaNew-Italic
 /BrowalliaUPC
 /BrowalliaUPC-Bold
 /BrowalliaUPC-BoldItalic
 /BrowalliaUPC-Italic
 /Brush445BT-Regular
 /BrushScript
 /BrushScriptBT-Regular
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ChungB
 /ChungCB
 /ChungL
 /ChungM
 /Clarendon
 /Clarendon-Bold
 /Clarendon-Condensed-Bold
 /Clarendon-Light
 /CliperSKana
 /CMjoB
 /CMjoL
 /CMjoM
 /Cmsy10
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolekana
 /CooperBlack
 /CooperBlack-Italic
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Copperplate-ThirtyThreeBC
 /Copperplate-ThirtyTwoBC
 /CordiaNew
 /CordiaNew-Bold
 /CordiaNew-BoldItalic
 /CordiaNew-Italic
 /CordiaUPC
 /CordiaUPC-Bold
 /CordiaUPC-BoldItalic
 /CordiaUPC-Italic
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /Crayon
 /CrounB
 /CrounM
 /CseriB
 /CstreB
 /CstreL
 /CstreM
 /CstreUL
 /CurlzMT
 /DanzinRegular
 /David-Bold
 /David-Reg
 /DavidTransparent
 /DFKMincho-Bd-WIN-KSC-H
 /DilleniaUPC
 /DilleniaUPCBold
 /DilleniaUPCBoldItalic
 /DilleniaUPCItalic
 /Dinbla
 /Dinbol
 /DinerRegular
 /DingDongBold
 /Dinlig
 /Dinmed
 /Dinreg
 /Dotum
 /DotumChe
 /DTnaskh0
 /DTnaskh1
 /DTnaskh2
 /DTnaskh3
 /DTthuluth0
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /EucrosiaUPC
 /EucrosiaUPCBold
 /EucrosiaUPCBoldItalic
 /EucrosiaUPCItalic
 /Eurostile
 /Eurostile-Bold
 /Eurostile-BoldExtendedTwo
 /Eurostile-ExtendedTwo
 /ExpoL-HM
 /ExpoM-HM
 /FelixTitlingMT
 /FencesPlain
 /FixedMiriamTransparent
 /Flora-Bold
 /Flora-BoldEx
 /Flora-BoldHo
 /Flora-BoldWd
 /Floralies
 /Flora-Normal
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FrankRuehl
 /FreesiaUPC
 /FreesiaUPCBold
 /FreesiaUPCBoldItalic
 /FreesiaUPCItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /FZSY--SURROGATE-0
 /Gaeul
 /GaramB-HM
 /Garamond
 /Garamond-Antiqua
 /Garamond-Bold
 /Garamond-Halbfett
 /Garamond-Italic
 /Garamond-Kursiv
 /Garamond-KursivHalbfett
 /GaramondNo4CyrTCY-Medi
 /GasiIIB
 /GasiIIL
 /GasiIIM
 /GauFontShirousagi
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSans
 /GillSans-Bold
 /GillSans-BoldCondensed
 /GillSans-BoldItalic
 /GillSans-Condensed
 /GillSans-ExtraBold
 /GillSans-Italic
 /GillSans-Light
 /GillSans-LightItalic
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /GothicL-HM
 /GothicRoundB-HM
 /Goudy
 /Goudy-Bold
 /Goudy-BoldItalic
 /Goudy-ExtraBold
 /Goudy-Italic
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /GraphicSansR-HM
 /GTB
 /GTM
 /Gulim
 /GulimChe
 /GulimOldHangulJamo
 /Gungsuh
 /GungsuhChe
 /H2bulL
 /H2gprM
 /H2gsrB
 /H2gtrB
 /H2gtrE
 /H2gtrM
 /H2hdrM
 /H2hsrM
 /H2mjmM
 /H2mjrB
 /H2mjrE
 /H2mjsM
 /H2mjuM
 /H2mkpB
 /H2mkrB
 /H2pirL
 /H2porL
 /H2porM
 /H2sa1B
 /H2sa1M
 /H2sa2L
 /H2snrB
 /H2ta1L
 /H2ta2M
 /H2wulE
 /H2wulL
 /H2yerM
 /H2ysrM
 /HaansoftBatang
 /HaansoftDotum
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HeadG
 /HeadlineR-HM
 /HeadlineSansR-HM
 /HeadR
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Condensed
 /Helvetica-Condensed-Bold
 /Helvetica-Condensed-BoldObl
 /Helvetica-Condensed-Oblique
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HGMinchoB
 /HGPMinchoB
 /HGSMinchoB
 /HighTowerText-Italic
 /HighTowerText-Reg
 /HMKBP
 /HMKBS
 /HoeflerText-Black
 /HoeflerText-BlackItalic
 /HoeflerText-Italic
 /HoeflerText-Ornaments
 /HoeflerText-Regular
 /HSalB
 /HSalL
 /HSalM
 /HYbdaL
 /HYbdaM
 /HYbsrB
 /HYBuDle-Medium
 /HYcysM
 /HYdnkB
 /HYdnkM
 /HYGoThic-Light
 /HYgprM
 /HYGraPhic-Bold
 /HYgsrB
 /HYgtrE
 /HYhaeseo
 /HYHeadLine-Bold
 /HyhwpEQ
 /HYkanB
 /HYkanM
 /HYKHeadLine-Bold
 /HYKHeadLine-Medium
 /HYLongSamul-Bold
 /HYLongSamul-Medium
 /HYmjrE
 /HYMokPan-Bold
 /HYmprL
 /HYMyeongJo-Light
 /HYMyeongJo-Medium
 /HYMyeongJo-Ultra
 /HYnamB
 /HYnamL
 /HYnamM
 /HYPMokPan-Bold
 /HYPMokPan-Light
 /HYPop-Medium
 /HYporM
 /HYPost-Bold
 /HYRGoThic-Bold
 /HYRGoThic-Medium
 /HYsanB
 /HYShortSamul-Light
 /HYSinGraPhic-Medium
 /HYSinMyeongJo-Bold
 /HYsnrL
 /HYsupB
 /HYsupM
 /HYSymbolD
 /HYSymbolE
 /HYSymbolF
 /HYSymbolG
 /HYSymbolH
 /HYTaJa-Bold
 /HYTaJaFull-Bold
 /HYTaJaFull-Light
 /HYTaJa-Medium
 /HYtbrB
 /HYwulB
 /HYwulM
 /HYYeasoL-Bold
 /HYYeatGul-Bold
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /IrisB
 /IrisL
 /IrisM
 /IrisUPC
 /IrisUPCBold
 /IrisUPCBoldItalic
 /IrisUPCItalic
 /JasmineUPC
 /JasmineUPC-Bold
 /JasmineUPC-BoldItalic
 /JasmineUPC-Italic
 /Jokerman-Regular
 /JuiceITC-Regular
 /Kartika
 /KirillicaWincyr
 /KodchiangUPC
 /KodchiangUPC-Bold
 /KodchiangUPC-BoldItalic
 /KodchiangUPC-Italic
 /KristenITC-Regular
 /KunstlerScript
 /KyunKo
 /KyunMyung
 /Latha
 /LatinWide
 /LCDReg
 /LetterGothic
 /LetterGothic-Bold
 /LetterGothic-BoldOblique
 /LevenimMT
 /LevenimMTBold
 /LilyUPC
 /LilyUPCBold
 /LilyUPCBoldItalic
 /LilyUPCItalic
 /Love
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Lydian
 /MagicR-HM
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /Marigold
 /MaturaMTScriptCapitals
 /MDAlong
 /MDArt
 /MDEasop
 /Mdesb
 /MDGaesung
 /MDSol
 /Mfoxb
 /Mfoxl
 /Mfoxm
 /MicrosoftSansSerif
 /MingLiU
 /Miriam
 /MiriamFixed
 /MiriamTransparent
 /Mistral
 /MJB
 /MJL
 /MJM
 /MMchonL
 /MMchonM
 /Modern-Regular
 /MoeumTR-HM
 /Monaco
 /MonaLisa-Recut
 /MonotypeCorsiva
 /MonotypeKoufi-Bold
 /MonotypeSorts
 /Mpaperb
 /Mpaperl
 /Mpaperm
 /Msam10
 /MS-Gothic
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MSSong
 /MS-UIGothic
 /MT-Symbol
 /MudirMT
 /Munhem
 /MVBoli
 /MWORLD
 /MyungjoL-HM
 /MyungjoXB-HM
 /NamuB-HM
 /NamuR-HM
 /Narkisim
 /Nekoyanagi
 /NemoB
 /NemoL
 /NemoM
 /NemoXB
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewGulim
 /NewsGothic
 /NewsGothic-Bold
 /NewsGothic-Condensed
 /NewsGothic-Italic
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NSimSun
 /OCRAExtended
 /OCRB10PitchBT-Regular
 /OldEnglishTextMT
 /Onyx
 /OriginalGaramondBT-Roman
 /Oxford
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /PhotinaCasualBlack
 /PinoB
 /PinoL
 /PinoM
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Pristina-Regular
 /PyunjiR-HM
 /QDotum
 /QGulim
 /QGungsuh
 /Raavi
 /RageItalic
 /Ravie
 /Retort
 /RetortOutline
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /Rod
 /RodTransparent
 /SaenaegiR-HM
 /SaenaegiXB-HM
 /SAKURAhira
 /San02B
 /San02L
 /San02M
 /San60B
 /San60L
 /San60M
 /San60R
 /San60SB
 /SanBiB
 /SanBiL
 /SanBiM
 /SanBoB
 /SanBoL
 /SanBoM
 /SanBsB
 /SanBsL
 /SanBsU
 /SanCrB
 /SanCrK
 /SanCrL
 /SandArB
 /SandArL
 /SandArM
 /SandArXB
 /SandAtM
 /SandAtXB
 /SandJg
 /SandKg
 /SandKm
 /SandMtB
 /SandMtL
 /SandMtM
 /SandSaB
 /SandSaL
 /SandSaM
 /SandSm
 /SandTg
 /SandTm
 /SanHgB
 /SanHgL
 /SanHgM
 /SanIgM
 /SanKbB
 /SanKbL
 /SanKbM
 /SanKsB
 /SanKsL
 /SanKsM
 /SanMogfilB
 /SanMogfilL
 /SanMogfilM
 /SanMrB
 /SanMrJ
 /SanMrM
 /SanPkB
 /SanPkL
 /SanPkM
 /SanPuB
 /SanPuW
 /SanSrB
 /SanSrL
 /SanSrM
 /SanSwB
 /SanSwL
 /SanSwM
 /SapphIIB
 /SapphIIL
 /SapphIIM
 /ScriptMTBold
 /SegoeMediaCenter-Regular
 /SegoeMediaCenter-Semibold
 /SeUtum
 /SgreekMedium
 /Shadow9
 /SHeadG
 /SHeadR
 /ShowcardGothic-Reg
 /Shruti
 /Shusha
 /Shusha02
 /Shusha05
 /SILDoulosIPA
 /SILDoulosIPA93Bold
 /SILDoulosIPA93BoldItalic
 /SILDoulosIPA93Italic
 /SILDoulosIPA93Regular
 /SILManuscriptIPA
 /SILManuscriptIPA93Bold
 /SILManuscriptIPA93BoldItalic
 /SILManuscriptIPA93Italic
 /SILManuscriptIPA93Regular
 /SILSophiaIPA
 /SILSophiaIPA93Bold
 /SILSophiaIPA93BoldItalic
 /SILSophiaIPA93Italic
 /SILSophiaIPA93Regular
 /SimHei
 /SimplifiedArabicBackslantedBoldItalic
 /SimSun
 /SimSun-PUA
 /SinGraphic
 /SinMun
 /SnapITC-Regular
 /SohaR-HM
 /Sol
 /SolB
 /SolL
 /SolM
 /SomaB
 /SomaL
 /SomaM
 /SPgoJ1-KSCpc-EUC-H
 /SPgoJ-KSCpc-EUC-H
 /SPgoJS-KSCpc-EUC-H
 /SPgoT-KSCpc-EUC-H
 /SPmuS-KSCpc-EUC-H
 /StempelGaramond-Bold
 /StempelGaramond-BoldItalic
 /StempelGaramond-Italic
 /StempelGaramond-Roman
 /Stencil
 /SwiriB-KSCpc-EUC-H
 /SwiriL-KSCpc-EUC-H
 /SwiriM-KSCpc-EUC-H
 /Sylfaen
 /Symbol
 /SymbolMT
 /TaeKo
 /TaeM
 /TaeUtum
 /Taffy
 /Tahoma
 /Tahoma-Bold
 /TahomaSmallCap-Bold
 /TempusSansITC
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldTh
 /TimesIPAnew
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Tiplo
 /TMjoB
 /TMjoL
 /TMjoM
 /ToodamB
 /ToodamL
 /ToodamM
 /TraditionalArabicBackslantedBoldItalic
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /TSTNamr
 /TSTPenC
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /TypewriteB
 /TypewriteL
 /TypewriteM
 /Univers
 /Univers-BlackExt
 /Univers-Black-Normal
 /Univers-BoldExt
 /UniversCondensedLight
 /UniversCondensedOblique
 /Univers-Light-Italic
 /Univers-Light-Light
 /Univers-Light-LightTh
 /Univers-Light-Normal
 /Univers-Medium
 /Univers-Oblique
 /Uri
 /Utum
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /Westminster
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WingsB
 /WingsL
 /WingsM
 /WoorinR-HM
 /WP-CyrillicA
 /WP-GreekCentury
 /WP-MultinationalARoman
 /WriSin
 /YDIBirdB
 /YDIBirdL
 /YDIBirdM
 /YDIBlueB
 /YDIBlueEB
 /YDIBlueL
 /YDIBlueM
 /YDIChungM
 /YDICMjoL
 /YDICMjoM
 /YDICstreB
 /YDICstreL
 /YDICstreM
 /YDICstreUL
 /YDIFadeB
 /YDIFadeL
 /YDIFadeM
 /YDIGasiIIB
 /YDIGasiIIL
 /YDIGasiIIM
 /YDIGirlB
 /YDIGirlL
 /YDIGirlM
 /YDIGukB
 /YDIGukL
 /YDIGukM
 /YDIHSalM
 /YDIHsangIIB
 /YDIHsangIIL
 /YDIHsangIIM
 /YDIMokB
 /YDIMokL
 /YDIPinoB
 /YDIPinoL
 /YDIPinoM
 /YDIPu
 /YDISmileB
 /YDISmileL
 /YDISmileM
 /YDISprIIB
 /YDISprIIL
 /YDISprIIM
 /YDISumB
 /YDISumL
 /YDISumM
 /YDIWebBatan
 /YDIWebDotum
 /YDIWriSin
 /YDIYGO310
 /YDIYGO330
 /YDIYGO340
 /YDIYGO350
 /YDIYGO360
 /YDIYMjO220
 /YDIYMjO230
 /YDIYMjO310
 /YDIYMjO330
 /YDIYMjO340
 /YDIYMjO350
 /YDIYMjO360
 /YDIYSin
 /YetR-HM
 /YGO11
 /YGO115
 /YGO12
 /YGO125
 /YGO13
 /YGO135
 /YGO14
 /YGO145
 /YGO15
 /YGO155
 /YGO16
 /YGO165
 /YGO22-KSCpc-EUC-H
 /YGO23-KSCpc-EUC-H
 /YGO24-KSCpc-EUC-H
 /YGO25-KSCpc-EUC-H
 /YGO31
 /YGO32
 /YGO33
 /YGO34
 /YGO35
 /YGO36
 /YGO520
 /YGO530
 /YGO540
 /YGO550
 /YheadB
 /YheadL
 /YheadM
 /YheadUL
 /YjBACDOOBold
 /YJBELLAMedium
 /YJBLOCKMedium
 /YJBONMOKGAKMedium
 /YjBUTGOTLight
 /YjCHMSOOTBold
 /YjDOOLGIMedium
 /YjDWMMOOGJOMedium
 /YjGABIBold
 /YjGOTGAEMedium
 /YjINITIALPOSITIVEMedium
 /YJINJANGMedium
 /YjMAEHWASemiBold
 /YjNANCHOMedium
 /YjSHANALLMedium
 /YjSOSELSemiBold
 /YjTEUNTEUNBold
 /YjWADAGMedium
 /YMjO11
 /YMjO115
 /YMjO12
 /YMjO125
 /YMjO13
 /YMjO135
 /YMjO14
 /YMjO145
 /YMjO15
 /YMjO155
 /YMjO16
 /YMjO165
 /YMjO22
 /YMjO23
 /YMjO24
 /YMjO31
 /YMjO32
 /YMjO33
 /YMjO34
 /YMjO35
 /YMjO36
 /YMjO42
 /YMjO44
 /YMjO45
 /YMjO520
 /YMjO530
 /YMjO540
 /YMjO550
 /YonseiB
 /YonseiL
 /YoolB-KSCpc-EUC-H
 /YoolL-KSCpc-EUC-H
 /YoolM-KSCpc-EUC-H
 /YSin
 /YtalB-KSCpc-EUC-H
 /YtalL-KSCpc-EUC-H
 /YtalM-KSCpc-EUC-H
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 1200
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

